A discontinuous Galerkin finite element method for an optimalcontrol problem related to semilinear parabolic PDE's is examined.The schemes under consideration are discontinuous in time butconforming in space. Convergence of discrete schemes of arbitraryorder is proven. In addition, the convergence of discontinuousGalerkin approximations of the associated optimality system to thesolutions of the continuous optimality system is shown. The proofis based on stability estimates at arbitrary time points underminimal regularity assumptions, and a discrete compactnessargument for discontinuous Galerkin schemes (see Walkington[SINUM (June 2008) (submitted), preprint available at http://www.math.cmu.edu/~noelw], Sects. 3, 4).