Amino acids are essential for the synthesis of protein. Amino acids contain both amine (R–NH2) and carboxylic acid (R–COOH) functional groups, which help to understand the possible formation mechanism of life in the universe. Among the 20 types of amino acids, glycine (NH2CH2COOH) is known as the simplest non-essential amino acid. In the last 40 years, all surveys of NH2CH2COOH in the interstellar medium, especially in the star-formation regions, have failed at the millimetre and sub-millimetre wavelengths. We aimed to identify the possible precursors of NH2CH2COOH, because it is highly challenging to identify NH2CH2COOH in the interstellar medium. Many laboratory experiments have suggested that methylenimine (CH2NH) plays a key role as a possible precursor of NH2CH2COOH in the star-formation regions via the Strecker synthesis reaction. After spectral analysis using the local thermodynamic equilibrium (LTE) model, we successfully identified the rotational emission lines of CH2NH towards the hot molecular core G10.47+0.03 using the Atacama Compact Array (ACA). The estimated column density of CH2NH towards G10.47+0.03 is (3.40 ± 0.2) × 1015 cm−2 with a rotational temperature of 218.70 ± 20 K, which is estimated from the rotational diagram. The fractional abundance of CH2NH with respect to H2 towards G10.47+0.03 is 2.61 × 10−8. We found that the derived abundance of CH2NH agree fairly well with the existing two-phase warm-up chemical modelling abundance value of CH2NH. We discuss the possible formation pathways of CH2NH within the context of hot molecular cores, and we find that CH2NH is likely mainly formed via neutral–neutral gas-phase reactions of CH3 and NH radicals towards G10.47+0.03.