We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Addressing the question of the formation and the evolution of galaxies in a cosmological context implies that we must understand their emission over the broadest electromagnetic spectrum. Using multi-wavelength data consistently enables to measure reliable physical parameters like star-formation rates and stellar masses.However, the drawback of this approach is that we do need more information in terms of data. We also need to handle them by using powerful computers and smart codes that are able to run ina reasonable amount of time and deal with a wealth of data and a huge number of models. A statistical approach is also mandatory to estimate the reliability of the results. In this chapter I will describe the different components and physical processesthat leave their imprints in the distribution of energy of galaxiesandhow physicalparameters related to their star formation history can be extracted from the fit of their spectral energy distribution. I willpresent physically-motivated codes which assume an energy balance between dust stellar absorption and re-emission
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.