We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Chapter 11 addresses time- and/or space-variant structural reliability problems. It begins with a description of problem types as encroaching or outcrossing, subject to the type of dependence on the time or space variable. A brief review of essentials from the random process theory is presented, including second-moment characterization of the process in terms of mean and auto-covariance functions and the power spectral density. Special attention is given to Gaussian and Poisson processes as building blocks for stochastic load modeling. Bounds to the failure probability are developed in terms of mean crossing rates or using a series system representation through parameter discretization. A Poisson-based approximation for rare failure events is also presented. Next, the Poisson process is used to build idealized stochastic load models that describe macro-level load changes or intermittent occurrences with random magnitudes and durations. The chapter concludes with the development of the load-coincidence method for combination of stochastic loads. The probability distribution of the maximum combined load effect is derived and used to estimate the failure probability.
We study the large deviation principle for stochastic processes of the form $\{\sum_{k=1}^{\infty}x_{k}(t)\xi_{k}:t\in T\}$, where $\{\xi_{k}\}_{k=1}^{\infty}$ is a sequence of i.i.d.r.v.'s with mean zero and $x_{k}(t)\in \mathbb{R}$. We present necessary and sufficient conditions for the large deviation principle for these stochastic processes in several situations. Our approach is based in showing the large deviation principle of the finite dimensional distributions and an exponential asymptotic equicontinuity condition. In order to get the exponential asymptotic equicontinuity condition, we derive new concentration inequalities, which are of independent interest.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.