We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper studies the parameter estimation for Ornstein–Uhlenbeck stochastic volatility models driven by Lévy processes. We propose computationally efficient estimators based on the method of moments that are robust to model misspecification. We develop an analytical framework that enables closed-form representation of model parameters in terms of the moments and autocorrelations of observed underlying processes. Under moderate assumptions, which are typically much weaker than those for likelihood methods, we prove large-sample behaviors for our proposed estimators, including strong consistency and asymptotic normality. Our estimators obtain the canonical square-root convergence rate and are shown through numerical experiments to outperform likelihood-based methods.
In this paper we relate the set of structure-preserving equivalent martingale measures ℳsp for financial models driven by semimartingales with conditionally independent increments to a set of measurable and integrable functions 𝒴. More precisely, we prove that ℳsp ≠ ∅ if and only if 𝒴 ≠ ∅, and connect the sets ℳsp and 𝒴 to the semimartingale characteristics of the driving process. As examples we consider integrated Lévy models with independent stochastic factors and time-changed Lévy models and derive mild conditions for ℳsp ≠ ∅.
Fractional Lévy processes generalize fractional Brownian motion in a natural way. We go a step further and extend the usual fractional Riemann-Liouville kernel to a regularly varying function. We call the resulting stochastic processes generalized fractional Lévy processes (GFLPs) and show that they may have short or long memory increments and that their sample paths may have jumps or not. Moreover, we define stochastic integrals with respect to a GFLP and investigate their second-order structure and sample path properties. A specific example is the Ornstein-Uhlenbeck process driven by a time-scaled GFLP. We prove a functional central limit theorem for such scaled processes with a fractional Ornstein-Uhlenbeck process as a limit process. This approximation applies to a wide class of stochastic volatility models, which include models where possibly neither the data nor the latent volatility process are semimartingales.
We consider strictly stationary infinitely divisible processes and first extend the mixing conditions given in Maruyama [Theory Probab. Appl. 15 (1970) 1–22] and Rosiński and Żak [Stoc. Proc. Appl. 61 (1996) 277–288] from the univariate to the d-dimensional case. Thereafter, we show that multivariate Lévy-driven mixed moving average processes satisfy these conditions and hence a wide range of well-known processes such as superpositions of Ornstein − Uhlenbeck (supOU) processes or (fractionally integrated) continuous time autoregressive moving average (CARMA) processes are always mixing. Finally, mixing of the log-returns and the integrated volatility process of a multivariate supOU type stochastic volatility model, recently introduced in Barndorff − Nielsen and Stelzer [Math. Finance 23 (2013) 275–296], is established.
Multivariate Lévy-driven mixed moving average (MMA) processes of the type Xt = ∬f(A, t - s)Λ(dA, ds) cover a wide range of well known and extensively used processes such as Ornstein-Uhlenbeck processes, superpositions of Ornstein-Uhlenbeck (supOU) processes, (fractionally integrated) continuous-time autoregressive moving average processes, and increments of fractional Lévy processes. In this paper we introduce multivariate MMA processes and give conditions for their existence and regular variation of the stationary distributions. Furthermore, we study the tail behavior of multivariate supOU processes and of a stochastic volatility model, where a positive semidefinite supOU process models the stochastic volatility.
This paper evaluates the long-term risk for equity-linked insurance products. We consider a specific type of equity-linked insurance product with guaranteed minimum maturity benefits (GMMBs), and assume that the underlying equity follows the stochastic volatility model which allows the return's latent volatility component to be short- or long-memory. The explicit form of the quantile reserve or the Value at Risk and its confidence intervals are derived for both the long-memory and short-memory stochastic volatility models. To illustrate the effect of long-memory volatility, we use the S&P 500 index as an example of linked equity. Simulation studies are performed to examine the accuracy of the quantile reserve and to demonstrate the consequence of low coverage probability if model misspecification takes place. The empirical results show that the confidence interval of quantile reserve could be severely underestimated if the long-memory effect in equity volatility is ignored.
We prove that the Heston volatility is Malliavin differentiable under the classical Novikov condition and give an explicit expression for the derivative. This result guarantees the applicability of Malliavin calculus in the framework of the Heston stochastic volatility model. Furthermore, we derive conditions on the parameters which assure the existence of the second Malliavin derivative of the Heston volatility. This allows us to apply recent results of Alòs (2006) in order to derive approximate option pricing formulae in the context of the Heston model. Numerical results are given.
Based on the concept of multipower variation we establish a class of easily computable and robust estimators for the integrated volatility, especially including the squared integrated volatility, in Lévy-type stochastic volatility models. We derive consistency and feasible distributional results for the estimators. Furthermore, we discuss the applications to time-changed CGMY, normal inverse Gaussian, and hyperbolic models with and without leverage, where the time-changes are based on integrated Cox-Ingersoll-Ross or Ornstein-Uhlenbeck-type processes. We deduce which type of market microstructure does not affect the estimates.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.