The anthropogenic modification of natural landscapes, and the consequent changes in the environmental conditions and resources availability at multiple spatial scales can affect complex species interactions involving key-stone species such as bat–parasite interactions. In this study, we aimed to identify the drivers potentially influencing host–bat fly interactions at different spatial scales (at the host, vegetation stand and landscape level), in a tropical anthropogenic landscape. For this purpose, we mist-netted phyllostomid and moormopid bats and collected the bat flies (streblids) parasitizing them in 10 sites representing secondary and old growth forest. In general, the variation in fly communities largely mirrored the variation in bat communities as a result of the high level of specialization characterizing host–bat fly interaction networks. Nevertheless, we observed that: (1) bats roosting dynamics can shape bat–streblid interactions, modulating parasite prevalence and the intensity of infestation; (2) a degraded matrix could favor crowding and consequently the exchange of ectoparasites among bat species, lessening the level of specialization of the interaction networks and promoting novel interactions; and (3) bat–fly interaction can also be shaped by the dilution effect, as a decrease in bat diversity could be associated with a potential increase in the dissemination and prevalence of streblids.