We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Exploiting high-energy electron beams colliding into high-intensity laser pulses brings an opportunity to reach high values of the dimensionless rest-frame acceleration $\chi$ and thereby invoke processes described by strong-field quantum electrodynamics (SFQED). Measuring deviations from the results of Furry-picture perturbation theory in SFQED at high $\chi$ can be valuable for testing existing predictions, as well as for guiding further theoretical developments. Nevertheless, such experimental measurements are challenging due to the probabilistic nature of the interaction processes, dominating signals of low-$\chi$ interactions and limited capabilities to control and measure the alignment and synchronization in such collision experiments. Here we elaborate a methodology of using approximate Bayesian computations for drawing statistical inferences based on the results of many repeated experiments despite partially unknown collision parameters that vary between experiments. As a proof-of-principle, we consider the problem of inferring the effective mass change due to coupling with the strong-field environment.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.