Orogenic forelands host interactions between deformation and static or migrating fluids. Given their accessibility and dimensions, these areas are not only historic landmarks for structural geology, but they are also areas of prime interest for georesource exploration and geological storage, and loci of potential geohazards. Geochemical techniques applied on cements filling tectonic structures and associated trapped fluids can constrain the temperature, pressure, origin and pathways of fluids during deformation and allow the characterization of the past fluid system. In this review focused on calcite cements, we first present and critically discuss the most used geochemical techniques to appraise specific parameters of the fluid system. Second, we summarize the outcomes of selected case studies where the past fluid system was reconstructed with consideration of tectonics, either at the scale of the individual fold/thrust or at the scale of the fold-and-thrust belt. At first order, the past fluid system evolves in a similar way with respect to the considered stage of deformation, being rather closed to external fluids when deformation is bounded to mesoscale structure development, and opening to vertical flow when thrust and folds develop. In a more detailed view, it seems that the past fluid system evolves and distributes under the influence of the structural style, of the geometry of the major faults and of the lithology of the sedimentary succession. Through this review, we illustrate the concept of geochemistry-assisted structural geology through case studies where the geochemistry of calcite veins constrained subsurface geometries and structural developments in orogenic forelands.