We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper presents the prototype demonstration where an integrated transmitter circuit drives a mobile handset terminal antenna in order to provide frequency tunability and multiple input multiple output (MIMO) operation across the 0.5–4.5 GHz frequency range. The transmitter implementation incorporates on-chip weighted signal generation, i.e. amplitude and phase scaling to provide sufficient MIMO performance in the low band (700–960 MHz) and in the high band (1.5–4.5 GHz). In the transmitter, two antenna elements are used for MIMO operation in the low band and another two in the high band. The transmitter integrated circuit (IC) is fabricated in a 28 nm bulk CMOS technology with an active on-chip area of 0.2 mm$^2$. A custom antenna measurement procedure is proposed here in order to support and verify active antenna measurements with transmitter IC. A measurement procedure for the transmitter system comprising the transmitter IC and four antenna clusters is developed and discussed in comparison with traditional passive antenna measurements. The measurement results demonstrate that the transmitter IC driving the antenna clusters provides total antenna efficiency of $-6.5$ dB to $-1.5$ dB, and envelope correlation coefficient below 0.4 across the designated frequency bands. The results indicate that the implemented transmitter IC successfully tunes frequency response of the antenna clusters, and enhances the MIMO operation of such mobile antennas.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.