We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The subgroup commutativity degree of a group $G$ is the probability that two subgroups of $G$ commute, or equivalently that the product of two subgroups is again a subgroup. For the dihedral, quasi-dihedral and generalised quaternion groups (all of 2-power cardinality), the subgroup commutativity degree tends to 0 as the size of the group tends to infinity. This also holds for the family of projective special linear groups over fields of even characteristic and for the family of the simple Suzuki groups. In this short note, we show that the family of finite $P$-groups also has this property.
Let $G$ be a finite group and $H$, $K$ two subgroups of $G$. A group $G$ is said to be a mutually $m$-permutable product of $H$ and $K$ if $G\,=\,HK$ and every maximal subgroup of $H$ permutes with $K$ and every maximal subgroup of $K$ permutes with $H$. In this paper, we investigate the structure of a finite group that is a mutually $m$-permutable product of two subgroups under the assumption that its maximal subgroups are totally smooth.
Let G be a finite group and let H≤G. We refer to |H||CG(H)| as the Chermak–Delgado measure ofH with respect to G. Originally described by Chermak and Delgado, the collection of all subgroups of G with maximal Chermak–Delgado measure, denoted 𝒞𝒟(G), is a sublattice of the lattice of all subgroups of G. In this paper we note that if H∈𝒞𝒟(G) then H is subnormal in G and prove that if K is a second finite group then 𝒞𝒟(G×K)=𝒞𝒟(G)×𝒞𝒟(K) . We additionally describe the 𝒞𝒟(G≀Cp) where G has a nontrivial centre and p is an odd prime and determine conditions for a wreath product to be a member of its own Chermak–Delgado lattice. We also examine the behaviour of centrally large subgroups, a subset of the Chermak–Delgado lattice.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.