We study a class of Schrödinger lattice systems with sublinear nonlinearities and perturbed terms. We get an interesting result that the systems do not have nontrivial homoclinic solutions if the perturbed terms are removed, but the systems have ground state homoclinic solutions if the perturbed terms are added. Besides, we also study the continuity of the homoclinic solutions in the perturbation terms at zero. To the best of our knowledge, there is no published result focusing on the perturbed Schrödinger lattice systems.