We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The thalamus traditionally is divided into the dorsal and ventral divisions, with both divisions divided into groups of nuclei. More recent approaches have defined divisions based on functional features, development, and/or evolutionary relationships. The thalamic nuclei are inextricably related to the corresponding divisions of the telencephalon, which is now recognized to have four developmental pallial sectors (the medial sector–derived hippocampal cortices; dorsal sector–derived neocortex; and lateral and ventral sector–derived claustrum, pallial amygdala, and related lateral nuclei in mammals) and the subpallium (which includes the septal nuclei, subpallial amygdala, and basal ganglia in mammals). The two evolutionary divisions of the dorsal thalamus, present in all jawed vertebrates, are the lemnothalamus and collothalamus. In amniotes, elaboration of different pallial sectors and their related dorsal thalamic nuclei was divergent, with the lemnothalamic-related, allocentric spatial mapping abilities selected for early in the line to mammals and the collothalamic-related, egocentric spatial mapping abilities selected for early in the line to reptiles, including birds. Secondarily, the collothalamic system was elaborated in mammals (e.g., LP/pulvinar in primates) and the lemnothalamic system in reptiles (e.g., primary visual and somatosensory nuclei in birds). Commonalities of thalamotelencephalic circuit motifs evolved in both lineages, supporting the functions of complex cognition and consciousness.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.