The stochastic subject formulation of latent trait models contends that, within a given subject, the event of obtaining a certain response pattern may be probabilistic. Ordinary latent trait models do not imply that these within-subject probabilities are identical to the conditional probabilities specified by the model. The latter condition is called local homogeneity. It is shown that local homogeneity is equivalent to subpopulation invariance of the model. In case of the monotone IRT model, local homogeneity implies absence of item bias, absence of item specific traits, and the possibility to join overlapping subtests. The following characterization theorem is proved: the homogeneous monotone IRT model holds for a finite or countable item pool if and only if the pool is experimentally independent and pairwise nonnegative association holds in every positive subpopulation.