We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Chapter 1: In this chapter, we provide formal definitions of real and complex vector spaces, and many examples. Among the important concepts introduced are linear combinations, span, linear independence, and linear dependence.
Viewing an algebraic number field as a vector space relative to a subfield, which was foreshadowed in Chapter 4, involves varying the field of "scalars" in the definition of vector space. This leads in turn to relative concepts of "basis" and "dimension" which must be taken into account in algebraic number theory. In this chapter we review linear algebra from the ground up, with an emphasis on the relative point of view. This brings some nonstandard results into the picture, such as the Dedekind product theorem and the representation of algebraic numbers by matrices.
We seek a sufficient condition which preserves almost-invariant subspaces under the weak limit of bounded operators. We study the bounded linear operators which have a collection of almost-invariant subspaces and prove that a bounded linear operator on a Banach space, admitting each closed subspace as an almost-invariant subspace, can be decomposed into the sum of a multiple of the identity and a finite-rank operator.
A definition of the reflexive index of a family of (closed) subspaces of a complex, separable Hilbert space $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}H$ is given, analogous to one given by D. Zhao for a family of subsets of a set. Following some observations, some examples are given, including: (a) a subspace lattice on $H$ with precisely five nontrivial elements with infinite reflexive index; (b) a reflexive subspace lattice on $H$ with infinite reflexive index; (c) for each positive integer $n$ satisfying dim $H\ge n+1$, a reflexive subspace lattice on $H$ with reflexive index $n$. If $H$ is infinite-dimensional and ${\mathcal{B}}$ is an atomic Boolean algebra subspace lattice on $H$ with $n$ equidimensional atoms and with the property that the vector sum $K+L$ is closed, for every $K,L\in {\mathcal{B}}$, then ${\mathcal{B}}$ has reflexive index at most $n$.
We study bounded linear regularity of finite sets of closed subspaces in a Hilbert space. In particular, we construct for each natural number $n\geq 3$ a set of $n$ closed subspaces of ${\ell }^{2} $ which has the bounded linear regularity property, while the bounded linear regularity property does not hold for each one of its nonempty, proper nonsingleton subsets. We also establish a related theorem regarding the bounded regularity property in metric spaces.
The probabilistic solutions of the nonlinear stochastic dynamic (NSD) systems with polynomial type of nonlinearity are investigated with the subspace-EPC method. The space of the state variables of large-scale nonlinear stochastic dynamic system excited by white noises is separated into two subspaces. Both sides of the Fokker-Planck-Kolmogorov (FPK) equation corresponding to the NSD system is then integrated over one of the subspaces. The FPK equation for the joint probability density function of the state variables in another subspace is formulated. Therefore, the FPK equation in low dimensions is obtained from the original FPK equation in high dimensions and it makes the problem of obtaining the probabilistic solutions of large-scale NSD systems solvable with the exponential polynomial closure method. Examples about the NSD systems with polynomial type of nonlinearity are given to show the effectiveness of the subspace-EPC method in these cases.
In this paper we give some properties of the pairwise perfectly normal spaces defined by Lane. In particular we prove that a space (X, P, Q) is pairwise perfectly normal if and only if every P(Q)–closed set is the zero of a P(Q)–l.s.c. and Q(P)–u.s.c. function. Also we characterize the pairwise perfect normality in terms of sequences of semicontinuous functions by means of a result which contains the known Tong's characterization of perfectly normal topological spaces, whose proof we modify by using the technique of binary relations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.