We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Airway injuries are the second leading cause of potentially survivable battlefield death and often require airway management strategies. Airway suction, the act of using negative pressure in a patient’s upper airway, removes debris that can prevent respiration, decreases possible aspiration risks, and allows clearer viewing of the airway for intubation. The most important characteristics for a portable airway suction device for prehospital combat care are portability, strong suction, and ease of use.
Methods:
This market review searched academic papers, military publications, Google searches, and Amazon to identify devices. The search included specific characteristics that would increase the likelihood that the devices would be suitable for battlefield use including weight, size, battery life, noise emission, canister size, tubing, and suction power.
Results:
Sixty portable airway suction devices were resulted, 31 of which met inclusion criteria – 11 manually powered devices and 20 battery-operated devices. One type of manual suction pump was a bag-like design with a squeezable suction pump that was extremely lightweight but had limited suction capabilities (vacuum pressure of 100mmHg). Another type of manual suction pump had a trigger-like design which is pulled back to create suction with a firm collection canister that had increased suction capabilities (vacuum pressures of 188-600mmHg), though still less than the battery operated, and was slightly heavier (0.23-0.458kg). Battery-operated devices had increased suction capabilities and were easier to use, but they were larger and weighed more (1.18-11.0kg).
Conclusion:
Future research should work to lighten and debulk battery-operated suction devices with high suction performance.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.