We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To address the issues of declining groundwater levels and the degradation of soil ecological functions caused by open-pit coal mining in China. Based on theoretical analysis, laboratory experiments, on-site monitoring, mathematical modeling, and other means, the concept of coal ecological protection mining of ‘damage reduction mining, three-dimensional protection, systematic restoration’ is proposed. The mining concept has achieved remarkable ecological restoration effects, leading the scientific and technological progress of safe, efficient and green mining in open-pit coal mines.
Technical summary
The mechanism of damage propagation among ‘rock-soil-water’ ecological elements in open-pit coal mining was revealed. Adopting comprehensive damage-reducing mining technology throughout the entire stripping process, mining and drainage, shengli open-pit coal mine has doubled its production capacity, and reduced the land excavation and damage by 60 mu/year, reduced the mining area by 1,128 mu, and raised the groundwater level by 2.6–6 m, and the ecological restoration of the drainage field was advanced by more than 1 year. Adopting the three-dimensional water storage technology involves underground reservoirs, aquifer reconstruction, and near-surface distributed water storage units, baorixile open-pit mine has built the world's first open-pit underground water reservoir, with a water storage capacity of 1.22 million m3, and the speed of groundwater level restoration has been increased by more than 70%. By adopting the systematic restoration technology of geomorphology-soil-vegetation in the discharge site, the soil water content in the demonstration area has been increased by 52%, the survival rate of plants has been increased by 34%, and the vegetation coverage has been increased by more than 40%.
Social media summary
Damage-reducing mining and systematic ecological restoration in open-pit coal mining are essential for the safe, efficient and green development of coal.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.