We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Although bipolar disorder (BD) is a fundamentally cyclical illness, a divided model of BD that emphasizes polarity over cyclicity has dominated modern psychiatric diagnostic systems since their advent in the 1980s. However, there has been a gradual return to conceptualizations of BD which focus on longitudinal course in the research community due to emerging supportive data. Advances in longitudinal statistical methods promise to further progress the field.
Methods
The current study employed hidden Markov modeling to uncover empirically derived manic and depressive states from longitudinal data [i.e. Young Mania Rating Scale and Montgomery–Asberg Depression Rating Scale responses across five occasions from the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD) study], estimate participants’ probabilities of transitioning between these states over time (n = 3918), and evaluate whether clinical variables (e.g. rapid cycling and substance dependence) predict participants’ state transitions (n = 3229).
Results
Analyses identified three empirically derived mood states (‘euthymic,’ ‘depressed,’ and ‘mixed’). Relative to the euthymic and depressed states, the mixed state was less commonly experienced, more temporally unstable, and uniquely associated with rapid cycling, substance use, and psychosis. Individuals assigned to the mixed state at baseline were relatively less likely to be diagnosed with BD-II (v. BD-I), more likely to present with a mixed or (hypo)manic episode, and reported experiencing irritable and elevated mood more frequently.
Conclusions
The results from the current study represent an important step in defining, and characterizing the longitudinal course of, empirically derived mood states that can be used to form the foundation of objective, empirical attempts to define meaningful subtypes of affective illness defined by clinical course.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.