Water tracks are zones of high soil moisture that route shallow groundwater down-slope, through the active layer and above the ice table. A water track in Taylor Valley, McMurdo Dry Valleys, was analysed for surface hydrogeological, geochemical, and biological characteristics in order to test the hypothesis that water tracks provide spatial structure to Antarctic soil ecosystems by changing the physical conditions in the soil environment within the water tracks from those outside the water tracks. The presence of the water track significantly affected the distribution of biotic and abiotic ecosystem parameters: increasing soil moisture, soil salinity, and soil organic matter within the water track relative to soils outside the water track, and reducing soil phosphate, soil pH, and the population of nematodes and other invertebrates in water track soils relative to off track soils. These results suggest that water tracks are distinct and extreme ecological zones in Taylor Valley that provide long-range (kilometre to multi- kilometre) structure to Antarctic hillslope ecosystems through physical control on soil moisture and solute content. Contrary to expectations, these high soil-moisture sites are not hotspots for faunal biological activity because high soil salinity makes them suitable habitats for only the most halo-tolerant organisms.