We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Computerized neglect tests could significantly deepen our disorder-specific knowledge by effortlessly providing additional behavioral markers that are hardly or not extractable from existing paper-and-pencil versions. This study investigated how testing format (paper versus digital), and screen size (small, medium, large) affect the Center of cancelation (CoC) in right-hemispheric stroke patients in the Letters and the Bells cancelation task. Our second objective was to determine whether a machine learning approach could reliably classify patients with and without neglect based on their search speed, search distance, and search strategy.
Method:
We compared the CoC measure of right hemisphere stroke patients with neglect in two cancelation tasks across different formats and display sizes. In addition, we evaluated whether three additional parameters of search behavior that became available through digitization are neglect-specific behavioral markers.
Results:
Patients’ CoC was not affected by test format or screen size. Additional search parameters demonstrated lower search speed, increased search distance, and a more strategic search for neglect patients than for control patients without neglect.
Conclusion:
The CoC seems robust to both test digitization and display size adaptations. Machine learning classification based on the additional variables derived from computerized tests succeeded in distinguishing stroke patients with spatial neglect from those without. The investigated additional variables have the potential to aid in neglect diagnosis, in particular when the CoC cannot be validly assessed (e.g., when the test is not performed to completion).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.