CdTe nanorods and various branched nanostructures with different crystal structures were have successfully prepared via the catalyst-assisted vacuum thermal evaporation (CVTE) technique using various experimental parameters. SEM and XRD studies were carried out on the as-prepared CdTe nanostructures. The results show that the morphologies and crystal structures of the products were strongly influenced by the growth conditions and the mole ratios of Bi and CdTe. In the high mole ratio (0.08:1) of Bi and CdTe, CdTe branched nanostructures of CdTe were obtained, while nanorods of CdTe were formed at a lower mole ratio of 0.05:1. The crystal structure of products is either Zinc blende or a two-phase mixture of zinc blende and wurtzite. The content of the wurtzite phase were found to increase with increasing growth temperature. Our results also reveal that high growth temperature tends to form the wurtzite phase, and stacking faults may exist in materials grown in higher temperatures. These nanostructures grow following the vapor–liquid–solid (VLS) mechanism.