We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Magnocellular deficit in visual perception and impaired emotion recognition are core features of schizophrenia, however their relationship and the neurobiological underpinnings are still unclear.
Objectives
The aim of our research was to investigate the oscillatory background of perception and emotion recognition in schizophrenia and to examine the relationship between these processes.
Methods
Thirty-nine subjects with schizophrenia and forty healthy controls subjects were enrolled in the study; the two study groups did not differ in age, gender and education. In the visual paradigm the participants viewed magnocellular biased low-spatial frequency (LSF) and parvocellular biased high-spatial frequency (HSF) Gabor-patches and in the second paradigm happy, sad and neutral faces were presented, while 128-channel EEG was recorded.
Results
Significantly weaker theta (4-7 Hz) event related synchronisation (ERS) was observed in patients compared to controls in the LSF condition, whereas in the HSF condition there was no difference between the two groups. Event related changes in theta amplitude were also found to be significantly weaker in patients compared to healthy controls in the emotion recognition task, which difference was disappeared after correction for ERS to LSF condition. In the correlational analysis theta activity in the magnocellular biased stimuli correlated significantly with theta activity in the emotion recognition task, while theta to parvocellular biased stimuli showed no similar correlation with emotion recognition.
Conclusions
In schizophrenia, emotion recognition impairments are closely related to the dysfunction of the magnocellular system, which supports the bottom-up model of schizophrenia.
Disclosure
No significant relationships.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.