Rotating machines monitoring in a non-stationary regime, characterized by the operating parameters (speed, load) variation, presents a particular challenge. The speed variation has an impact on the vibratory response given by the accelerometers and therefore masks any defect that may be detected by classical indicators (for example RMS value). To overcome this problem, a new indicator is proposed. For this, a signal accelerometer and a signal from an optical encoder are acquired simultaneously. An algorithm to estimate the instantaneous speed from the signal delivered by the optical encoder is applied. Then, each sample of the accelerometer signal is divided by its corresponding instantaneous speed sample. The RMS value is then applied to the resulting signal. A model simulation signal is used to test the proposed method. A test rig is performed to extract signals of different degradation states of thrust bearings in variable speed regime. The results show a correlation between the proposed RMS value and the thrust bearings state in variable regime.