Objectives: The objective of this study is to apply a Markov model to compare cost-effectiveness of total knee replacement (TKR) using computer-assisted surgery (CAS) with that of TKR using a conventional manual method in the absence of formal clinical trial evidence.
Methods: A structured search was carried out to identify evidence relating to the clinical outcome, cost, and effectiveness of TKR. Nine Markov states were identified based on the progress of the disease after TKR. Effectiveness was expressed by quality-adjusted life years (QALYs). The simulation was carried out initially for 120 cycles of a month each, starting with 1,000 TKRs. A discount rate of 3.5 percent was used for both cost and effectiveness in the incremental cost-effectiveness analysis. Then, a probabilistic sensitivity analysis was carried out using a Monte Carlo approach with 10,000 iterations.
Results: Computer-assisted TKR was a long-term cost-effective technology, but the QALYs gained were small. After the first 2 years, the incremental cost per QALY of computer-assisted TKR was dominant because of cheaper and more QALYs. The incremental cost-effectiveness ratio (ICER) was sensitive to the “effect of CAS,” to the CAS extra cost, and to the utility of the state “Normal health after primary TKR,” but it was not sensitive to utilities of other Markov states. Both probabilistic and deterministic analyses produced similar cumulative serious or minor complication rates and complex or simple revision rates. They also produced similar ICERs.
Conclusions: Compared with conventional TKR, computer-assisted TKR is a cost-saving technology in the long-term and may offer small additional QALYs. The “effect of CAS” is to reduce revision rates and complications through more accurate and precise alignment, and although the conclusions from the model, even when allowing for a full probabilistic analysis of uncertainty, are clear, the “effect of CAS” on the rate of revisions awaits long-term clinical evidence.