We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The distribution of the external forces acting on a body affects both the internal and external deformation of the body. The internal deformations in particular depend on how the forces are distributed throughout the body. Stress is a key concept that gives us a way to characterize those internal force distributions. This chapter will discuss in depth the stress concept, including stress transformations, principal stresses, states of stress, and Mohr's circle. MATLAB® will be used as the principal tool for calculations.
The analysis of normal and shear stresses over differently oriented surface elements through a considered material point is presented. The Cauchy relation for traction vectors is introduced, which leads to the concept of a stress tensor. The analysis is presented of one-, two-, and three-dimensional states of stress, the principal stresses (maximum and minimum normal stresses), the maximum shear stress, and the deviatoric and spherical parts of the stress tensor.The equations of equilibrium are derived and the corresponding boundary conditions are formulated.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.