We give a characterization of inter-model sets with Euclidean internal space. This characterization is similar to previous results for general inter-model sets obtained independently by Baake, Lenz and Moody, and Aujogue. The new ingredients are two additional conditions. The first condition is on the rank of the abelian group generated by the set of internal differences. The second condition is on a flow on a torus defined via the address map introduced by Lagarias. This flow plays the role of the maximal equicontinuous factor in the previous characterizations.