We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Major-incident triage ensures effective emergency care and utilization of resources. Prehospital emergency care providers are often the first medical professionals to arrive at any major incident and should be competent in primary triage. However, various factors (including level of training) influence their triage performance.
Hypothesis/Problem
The aim of this study was to determine the difference in major-incident triage performance between different training levels of prehospital emergency care providers in South Africa utilizing the Triage Sieve algorithm.
Methods
This was a cross-sectional study involving differently trained prehospital providers: Advanced Life Support (ALS); Intermediate Life Support (ILS); and Basic Life Support (BLS). Participants wrote a validated 20-question pre-test before completing major-incident training. Two post-tests were also completed: a 20-question written test and a three-question face-to-face evaluation. Outcomes measured were triage accuracy and duration of triage. The effect of level of training, gender, age, previous major-incident training, and duration of service were determined.
Results
A total of 129 prehospital providers participated. The mean age was 33.4 years and 65 (50.4%) were male. Most (n=87; 67.4%) were BLS providers. The overall correct triage score pre-training was 53.9% (95% CI, 51.98 to 55.83), over-triage 31.4% (95% CI, 29.66 to 33.2), and under-triage 13.8% (95% CI, 12.55 to 12.22). Post-training, the overall correct triage score increased to 63.6% (95% CI, 61.72 to 65.44), over-triage decreased to 17.9% (95% CI, 16.47 to 19.43), and under-triage increased to 17.8% (95% CI, 16.40 to 19.36). The ALS providers had both the highest likelihood of a correct triage score post-training (odds ratio 1.21; 95% CI, 0.96-1.53) and the shortest duration of triage (median three seconds, interquartile range two to seven seconds; P=.034). Participants with prior major-incident training performed better (P=.001).
Conclusion
Accuracy of major-incident triage across all levels of prehospital providers in South Africa is less than optimal with non-significant differences post-major-incident training. Prior major-incident training played a significant role in triage accuracy indicating that training should be an ongoing process. Although ALS providers were the quickest to complete triage, this difference was not clinically significant. The BLS and ILS providers with major-incident training can thus be utilized for primary major-incident triage allowing ALS providers to focus on more clinical roles.
AlenyoAN, SmithWP, McCaulM, Van HovingDJ. A Comparison Between Differently Skilled Prehospital Emergency Care Providers in Major-Incident Triage in South Africa. Prehosp Disaster Med. 2018;33(6):575–580.
Triage is the systematic prioritization of casualties when there is an imbalance between the needs of these casualties and resource availability. The triage sieve is a recognized process for prioritizing casualties for treatment during mass-casualty incidents (MCIs). While the application of a triage sieve generally is well-accepted, the measurement of its accuracy has been somewhat limited. Obtaining reliable measures for triage sieve accuracy rates is viewed as a necessity for future development in this area.
Objective
The goal of this study was to investigate how theoretical knowledge acquisition and the practical application of an aide-memoir impacted triage sieve accuracy rates.
Method
Two hundred and ninety-two paramedics were allocated randomly to one of four separate sub-groups, a non-intervention control group, and three intervention groups, which involved them receiving either an educational review session and/or an aide-memoir. Participants were asked to triage sieve 20 casualties using a previously trialed questionnaire.
Results
The study showed the non-intervention control group had a correct accuracy rate of 47%, a similar proportion of casualties found to be under-triaged (37%), but a significantly lower number of casualties were over-triaged (16%). The provision of either an educational review or aide-memoir significantly increased the correct triage sieve accuracy rate to 77% and 90%, respectively. Participants who received both the educational review and aide-memoir had an overall accuracy rate of 89%. Over-triaged rates were found not to differ significantly across any of the study groups.
Conclusion
This study supports the use of an aide-memoir for maximizing MCI triage accuracy rates. A “just-in-time” educational refresher provided comparable benefits, however its practical application to the MCI setting has significant operational limitations. In addition, this study provides some guidance on triage sieve accuracy rate measures that can be applied to define acceptable performance of a triage sieve during a MCI.
CuttanceG, DansieK, RaynerT. Paramedic Application of a Triage Sieve: A Paper-Based Exercise. Prehosp Disaster Med. 2017;32(1):3–13.
British police officers authorized to carry firearms may need to make judgments about the severity of injury of individuals or the relative priority of clinical need of a group of injured patients in tactical and non-tactical situations. Most of these officers receive little or no medical training beyond basic first aid to enable them to make these clinical decisions. Therefore, the aim of this study is to determine the accuracy of triage decision-making of firearms-trained police officers with and without printed decision-support materials.
Methods:
Eighty-two police firearms officers attending a tactical medicine course (FASTAid) were recruited to the study. Data were collected using a paper-based triage exercise that contained brief, clinical details of 20 adults and 10 children. Subjects were asked to assign a clinical priority of immediate or priority 1 (P1); urgent or priority 2 (P2); delayed or priority 3 (P3); or dead, to each casualty. Then, they were provided with decision-making materials, but were not given any instruction as to how these materials should be used. Subjects then completed a second triage exercise, identical to the first, except this time using the decision-support materials.
Data were analyzed using mixed between-within subjects analysis of variance. This allowed comparisons to be made between the scores for Exercise 1 (no decision-support material) and Exercise 2 (with decision-support material). It also allowed any differences between those students with previous triage training and those without previous training to be explored.
Results:
The use of triage decision-making materials resulted in a significant increase in correct responses (p <0.001). Improvement in accuracy appears to result mainly from a reduction in the extent of under-triage. There were significant differences (p <0.05) between those who had received previous triage training and those who had not, with those having received triage training doing slightly better.
Conclusion:
It appears that significant improvements in the accuracy of triage decision-making by police firearms officers can be achieved with the use of appropriate triage decision-support materials. Training may offer additional improvements in accuracy, but this improvement is likely to be small when decision-support materials are provided. With basic clinical skills and appropriate decision-support materials, it is likely that the police officer can make accurate triage decisions in a multiple-casualty scenario or make judgments of the severity of injury of a given individual in both tactical and non-tactical situations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.