We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study aimed to optimise computed tomography (CT) simulation scan parameters to increase the accuracy for gross tumour volume identification in brain radiotherapy. For this purpose, high-contrast scan protocols were assessed.
Materials and methods:
A CT accreditation phantom (ACR Gammex 464) was used to optimise brain CT scan parameters on a Toshiba Alexion 16-row multislice CT scanner. Dose, tube voltage, tube current–time and CT dose index (CTDI) were varied to create five image quality enhancement (IQE) protocols. They were assessed in terms of contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR) and noise level and compared with a standard clinical protocol. Finally, the ability of the selected protocols to identify low-contrast objects was examined based on a subjective method.
Results:
Among the five IQE protocols, the one with the highest tube current–time product (250 mA) and lowest tube voltage (100 kVp) showed higher CNR, while another with a tube current–time product of 150 mA and a tube voltage of 135 kVp had improved SNR and lower noise level compared to the standard protocol. In contouring low-contrast objects, the protocol with the highest milliampere and lowest peak kilovoltage exhibited the lowest error rate (1%) compared to the standard protocol (25%).
Findings:
CT image quality should be optimised using the high-dose parameters created in this study to provide better soft tissue contrast. This could lead to an accurate identification of gross tumour volume recognition in the planning of radiotherapy treatment.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.