We analyze here, a two-grid finite element method for the two dimensional time-dependent incompressible Navier-Stokes equations with non-smooth initial data. It involves solving the non-linear Navier-Stokes problem on a coarse grid of size H and solving a Stokes problem on a fine grid of size h, h « H. This method gives optimal convergence for velocity in H1-norm and for pressure in L2-norm. The analysis mainly focuses on the loss of regularity of the solution at t = 0 of the Navier-Stokes equations.