We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the unique recovery of a non-compactly supported and non-periodic perturbation of a Schrödinger operator in an unbounded cylindrical domain, also called waveguide, from boundary measurements. More precisely, we prove recovery of a general class of electric potentials from the partial Dirichlet-to-Neumann map, where the Dirichlet data is supported on slightly more than half of the boundary and the Neumann data is taken on the other half of the boundary. We apply this result in different contexts including recovery of some general class of non-compactly supported coefficients from measurements on a bounded subset and recovery of an electric potential, supported on an unbounded cylinder, of a Schrödinger operator in a slab.
The numerical solution of the time-fractional sub-diffusion equation on an unbounded domain in two-dimensional space is considered, where a circular artificial boundary is introduced to divide the unbounded domain into a bounded computational domain and an unbounded exterior domain. The local artificial boundary conditions for the fractional sub-diffusion equation are designed on the circular artificial boundary by a joint Laplace transform and Fourier series expansion, and some auxiliary variables are introduced to circumvent high-order derivatives in the artificial boundary conditions. The original problem defined on the unbounded domain is thus reduced to an initial boundary value problem on a bounded computational domain. A finite difference and L1 approximation are applied for the space variables and the Caputo time-fractional derivative, respectively. Two numerical examples demonstrate the performance of the proposed method.
We consider an infinite planar straight strip perforated by small holes along a curve. In such a domain, we consider a general second-order elliptic operator subject to classical boundary conditions on the holes. Assuming that the perforation is non-periodic and satisfies rather weak assumptions, we describe all possible homogenized problems. Our main result is the norm-resolvent convergence of the perturbed operator to a homogenized one in various operator norms and the estimates for the rate of convergence. On the basis of the norm-resolvent convergence, we prove the convergence of the spectrum.
We prove the existence of one positive, one negative and one sign-changing solution of a p-Laplacian equation on ℝN with a p-superlinear subcritical term. Sign-changing solutions of quasilinear elliptic equations set on the whole of ℝN have scarcely been investigated in the literature. Our assumptions here are similar to those previously used by some authors in bounded domains, and our proof uses fairly elementary critical point theory, based on constraint minimization on the nodal Nehari set. The lack of compactness due to the unbounded domain is overcome by working in a suitable weighted Sobolev space.
We propose a finite-difference ghost-point approach for the numerical solution of Cauchy-Navier equations in linear elasticity problems on arbitrary unbounded domains. The technique is based on a smooth coordinate transformation, which maps an unbounded domain into a unit square. Arbitrary geometries are defined by suitable level-set functions. The equations are discretized by classical nine-point stencil on interior points, while boundary conditions and high order reconstructions are used to define the field variables at ghost-points, which are grid nodes external to the domain with a neighbor inside the domain. The linear system arising from such discretization is solved by a multigrid strategy. The approach is then applied to solve elasticity problems in volcanology for computing the displacement caused by pressure sources. The method is suitable to treat problems in which the geometry of the source often changes (explore the effects of different scenarios, or solve inverse problems in which the geometry itself is part of the unknown), since it does not require complex re-meshing when the geometry is modified. Several numerical tests are successfully performed, which asses the effectiveness of the present approach.
We propose a hierarchy of novel absorbing boundary conditions for the one-dimensional stationary Schrödinger equation with general (linear and nonlinear) potential. The accuracy of the new absorbing boundary conditions is investigated numerically for the computation of energies and ground-states for linear and nonlinear Schrödinger equations. It turns out that these absorbing boundary conditions and their variants lead to a higher accuracy than the usual Dirichlet boundary condition. Finally, we give the extension of these ABCs to N-dimensional stationary Schrödinger equations.
In this paper the numerical solution of the two-dimensional sine-Gordon equation is studied. Split local artificial boundary conditions are obtained by the operator splitting method. Then the original problem is reduced to an initial boundary value problem on a bounded computational domain, which can be solved by the finite difference method. Several numerical examples are provided to demonstrate the effectiveness and accuracy of the proposed method, and some interesting propagation and collision behaviors of the solitary wave solutions are observed.
We present a finite element method to compute guided modes in a stratified medium. The major difficulty to overcome is related to the unboundedness of the stratified medium. Our method is an alternative to the use of artificial boundary conditions and to the use of integral representation formulae. The domain is bounded in such a way we can write the solution on its lateral boundaries in terms of Fourier series. The series is then truncated for the computations over the bounded domain. The problem is scalar and 2-dimensional.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.