We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We discuss the basic concepts of waves, including phase velocity, dispersion, group velocity. We show how to use the Fourier principle to construct any general wave from the harmonic waves.
This chapter provides an introduction to uncertainty relations underlying sparse signal recovery. We start with the seminal work by Donoho and Stark (1989), which defines uncertainty relations as upper bounds on the operator norm of the band-limitation operator followed by the time-limitation operator, generalize this theory to arbitrary pairs of operators, and then develop, out of this generalization, the coherence-based uncertainty relations due to Elad and Bruckstein (2002), plus uncertainty relations in terms of concentration of the 1-norm or 2-norm. The theory is completed with set-theoretic uncertainty relations which lead to best possible recovery thresholds in terms of a general measure of parsimony, the Minkowski dimension. We also elaborate on the remarkable connection between uncertainty relations and the “large sieve,” a family of inequalities developed in analytic number theory. We show how uncertainty relations allow one to establish fundamental limits of practical signal recovery problems such as inpainting, declipping, super-resolution, and denoising of signals corrupted by impulse noise or narrowband interference.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.