We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We extend the results of Schu [‘Iterative construction of fixed points of asymptotically nonexpansive mappings’, J. Math. Anal. Appl.158 (1991), 407–413] to monotone asymptotically nonexpansive mappings by means of the Fibonacci–Mann iteration process
where $T$ is a monotone asymptotically nonexpansive self-mapping defined on a closed bounded and nonempty convex subset of a uniformly convex Banach space and $\{f(n)\}$ is the Fibonacci integer sequence. We obtain a weak convergence result in $L_{p}([0,1])$, with $1<p<+\infty$, using a property similar to the weak Opial condition satisfied by monotone sequences.
In this paper we first give a negative answer to a question of Amini-Harandi [‘Best proximity point theorems for cyclic strongly quasi-contraction mappings’, J. Global Optim.56 (2013), 1667–1674] on a best proximity point theorem for cyclic quasi-contraction maps. Then we prove some new results on best proximity point theorems that show that results of Amini-Harandi for cyclic strongly quasi-contractions are true under weaker assumptions.
Let C be a bounded, closed, convex subset of a uniformly convex Banach space X. We investigate the existence of common fixed points for pointwise Lipschitzian semigroups of nonlinear mappings Tt:C→C, where each Tt is pointwise Lipschitzian. The latter means that there exists a family of functions αt:C→[0,∞) such that for x,y∈C. We also demonstrate how the asymptotic aspect of the pointwise Lipschitzian semigroups can be expressed in terms of the respective Fréchet derivatives.
We give a classification (up to smooth homotopy) of finitely summable Fredholm representations (Fredholm modules) over higher rank groups and lattices. Our results are a direct consequence of work of Bader, Furman, Gelander and Monod on generalizations of Kazhdan's property T for locally compact groups.
Let A be a subset of a Banach space E. A mapping T: A →A is called asymptoically semicontractive if there exists a mapping S: A×A→A and a sequence (kn) in [1, ∞] such that Tx=S(x, x) for all x ∈A while for each fixed x ∈A, S(., x) is asymptotically nonexpansive with sequence (kn) and S(x,.) is strongly compact. Among other things, it is proved that each asymptotically semicontractive self-mpping T of a closed bounded and convex subset A of a uniformly convex Banach space E which satisfies Opial's condition has a fixed point in A, provided s has a certain asymptoticregurity property.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.