We use the method of Bruinier–Raum to show that symmetric formal Fourier–Jacobi series, in the cases of norm-Euclidean imaginary quadratic fields, are Hermitian modular forms. Consequently, combining a theorem of Yifeng Liu, we deduce Kudla’s conjecture on the modularity of generating series of special cycles of arbitrary codimension for unitary Shimura varieties defined in these cases.