We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter discusses the problem of selecting predictors in a linear regression model, which is a special case of model selection. One might think that the best model is the one with the most predictors. However, each predictor is associated with a parameter that must be estimated, and errors in the estimation add uncertainty to the final prediction. Thus, when deciding whether to include certain predictors or not, the associated gain in prediction skill should exceed the loss due to estimation error. Model selection is not easily addressed using a hypothesis testing framework because multiple testing is involved. Instead, the standard approach is to define a criterion for preferring one model over another. One criterion is to select the model that gives the best predictions of independent data. By independent data, we mean data that is generated independently of the sample that was used to inform the model building process. Criteria for identifying the model that gives the best predictions in independent data include Mallows’ Cp, Akaike’s Information Criterion, Bayesian Information Criterion, and cross-validated error.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.