We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study a variational problem which was introduced by Hannon,Marcus and Mizel [ESAIM: COCV9 (2003) 145–149] todescribe step-terraces on surfaces of so-called “unorthodox” crystals.We show that there is no nondegenerate intervals on which the absolutevalue of a minimizer is $\pi/2$ identically.
In the 1950's and 1960's surface physicists/metallurgists such as Herring and Mullins applied ingenious thermodynamic arguments to explain a number of experimentally observed surface phenomena in crystals. These insights permitted the successful engineering of a large number of alloys, where the major mathematical novelty was that the surface response to external stress was anisotropic. By examining step/terrace (vicinal) surface defects it was discovered through lengthy and tedious experiments that the stored energy density (surface tension) along a step edge was a smooth symmetric function β of the azimuthal angle θ to the step, and that the positive function β attains its minimum value at $\theta = \pi/2$ and its maximum value at $\theta = 0$. The function β provided the crucial thermodynamic parameters needed for the engineering of these materials. Moreover the minimal energy configuration of the step is determined by the values of the stiffness function$\beta'' + \beta$ which ultimately leads to the magnitude and direction of surface mass flow for these materials. In the 1990's there was a dramatic improvement in electron microscopy which permitted real time observation of the meanderings of a step edge under Brownian heat oscillations. These observations provided much more rapid determination of the relevant thermodynamic parameters for the step edge, even for crystals at temperatures below their roughening temperature. Use of these tools led J. Hannon and his coexperimenters to discover that some crystals behave in a highly anti-intuitive manner as their temperature is varied. The present article is devoted to a model described by a class of variational problems. The main result of the paper describes the solutions of the corresponding problem for a generic integrand.
The equilibrium configurations of a one-dimensional variational model thatcombines terms expressing the bulk energy of a deformable crystal and itssurface energy are studied. After elimination of the displacement, theproblem reduces to the minimization of a nonconvex and nonlocal functional ofa single function, the thickness. Depending on a parameter which strengthensone of the terms comprising the energy at the expense of the other, it isshown that this functional may have a stable absolute minimum or only aminimizing sequence in which the term corresponding to the bulk energy isforced to zero by the production of a crack in the material.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.