A modelling approach to simulating vegetation dynamics is described, incorporating critical processes of carbon sequestration, growth, mortality and distribution. The model has been developed to investigate the responses of vegetation to environmental change, at time scales from days to centuries and from the local to the global scale. The model is outlined and subsequent tests, against independent data sources, are relatively successful, from the small scale to the global scale. Tests against eddy covariance observations of carbon exchange by vegetation indicated significant differences between measured and simulated net ecosystem production (NEP). NEP is the net of large fluxes due to gross primary production and respiration, which are not directly measured and so there is some uncertainty in explaining differences between observations and simulations. In addition it was noted that closer agreement of fluxes was achieved for natural, or long-lived managed vegetation than for recently managed vegetation. The discrepancies appear to be most closely related to respiratory carbon losses from the soil, but this area needs further exploration. The differences do not scale up to the global scale, where simulated and measured global net biome production were similar, indicating that fluxes measured at the managed observed sites are not typical globally.
The model (the Sheffield Dynamic Global Vegetation Model, SDGVM) has been applied to contemporary vegetation dynamics and indicates a significant CO2 fertilisation effect on the sequestration of atmospheric CO2. The terrestrial carbon sink for the 20th century is simulated to be widespread between latitudes 40° S and 65° N, but is greatest between 10° S and 6° N, excluding the effects of human deforestation. The mean maximum sink capacity over the 20th century is small, at 25 gC m−2 year−1, or approximately 1% of gross primary production.
Simulations of vegetation dynamics under a scenario of future global warming indicate a gradual decline in the terrestrial carbon sink, with the capacity to absorb human emissions of CO2 being reduced from 20% in 2000 to approximately 2% between 2075 and 2100. The responses of carbon sequestration and vegetation structure and distribution to stabilisation of climate and CO2 may extend for up to 50 years after stabilisation has occurred.