We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
If ${\mathbf v} \in {\mathbb R}^{V(X)}$ is an eigenvector for eigenvalue $\lambda $ of a graph X and $\alpha $ is an automorphism of X, then $\alpha ({\mathbf v})$ is also an eigenvector for $\lambda $. Thus, it is rather exceptional for an eigenvalue of a vertex-transitive graph to have multiplicity one. We study cubic vertex-transitive graphs with a nontrivial simple eigenvalue, and discover remarkable connections to arc-transitivity, regular maps, and number theory.
A graph Γ is said to be locally primitive if, for each vertex α, the stabilizer in Aut Γ of α induces a primitive permutation group on the set of vertices adjacent to α. In 1978, Richard Weiss conjectured that for a finite vertex-transitive locally primitive graph Γ, the number of automorphisms fixing a given vertex is bounded above by some function of the valency of Γ. In this paper we prove that the conjecture is true for finite non-bipartite graphsprovided that it is true in the case in which Aut Γ contains a locally primitive subgroup that is almost simple.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.