This paper presents an efficient water cycle algorithm based on the processes of water cycle with movement of streams and rivers in to the sea. This optimization algorithm is applied to obtain the optimal feasible path with minimum travel duration during motion planning of both single and multiple humanoid robots in both static and dynamic cluttered environments. This technique discards the rainfall process considering falling water droplets forming streams during raining and the process of flowing. The flowing process searches the solution space and finds the more accurate solution and represents the local search. Motion planning of humanoids is carried out in V-REP software. The performance of proposed algorithm is tested in experimental scenario under laboratory conditions and shows the developed algorithm performs well in terms of obtaining optimal path length and minimum time span of travel. Here, navigational analysis has been performed on both single as well as multiple humanoid robots. Statistical analysis of results obtained from both simulation and experimental environments is carried out for both single and multiple humanoids, along with the comparison with another existing optimization technique that indicate the strength and effectiveness of the proposed water cycle algorithm.