We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The motion of fluids is a complex area of physics because of the non-linearity of their equations of motion. As an introduction to the field, a selection of important results in the motions of fluids and gases, illustrating the richness and complexity of the subject as well as the often non-intuitive features of fluid flow, are presented.The topics include Bernoulli’s equations, gravity waves in shallow and deep water, viscous flow, Stokes’ formula for viscous flow past a spherical body, vorticity and Kelvin’s circulation theorem. The emphasis is upon the physics of the problems, rather than the mathematical complexities involved.
This paper re-examines the problem of the flow of a fluid of finite depth over two Gaussian-shaped obstructions on the stream bed. A weakly nonlinear analysis in the form of the Korteweg–de Vries equation is used to compare with the results of the fully nonlinear problem. The main focus is to find waveless subcritical solutions, and contours showing the obstruction height and separation values that result in waveless solutions are found for different Froude numbers and different obstruction widths.
We present an existence and stability theory for gravity–capillary solitary waves with constant vorticity on the surface of a body of water of finite depth. Exploiting a rotational version of the classical variational principle, we prove the existence of a minimizer of the wave energy 𝓗 subject to the constraint 𝓘 = 2µ, where 𝓘 is the wave momentum and 0 < µ ≪ 1. Since 𝓗 and 𝓘 are both conserved quantities, a standard argument asserts the stability of the set Dµ of minimizers: solutions starting near Dµ remain close to Dµ in a suitably defined energy space over their interval of existence. In the applied mathematics literature solitary water waves of the present kind are described by solutions of a Korteweg–de Vries equation (for strong surface tension) or a nonlinear Schrödinger equation (for weak surface tension). We show that the waves detected by our variational method converge (after an appropriate rescaling) to solutions of the appropriate model equation as µ ↓ 0.
The subcritical flow of a stream over a bottom obstruction or depression is considered with particular interest in obtaining solutions with no downstream waves. In the linearised problem this can always be achieved by superposition of multiple obstructions, but it is not clear whether this is possible in a full nonlinear problem. Solutions computed here indicate that there is an effective nonlinear superposition principle at work as no special shape modifications were required to obtain wave-cancelling solutions. Waveless solutions corresponding to one or more trapped waves are computed at a range of different Froude numbers and are shown to provide a rather elaborate mosaic of solution curves in parameter space when both negative and positive obstruction heights are included.
We consider the linearization of the three-dimensional water waves equation with surface tension about a flat interface. Using oscillatory integral methods, we prove that solutions of this equation demonstrate dispersive decay at the somewhat surprising rate of ${{t}^{-5/6}}$. This rate is due to competition between surface tension and gravitation at $O(1)$ wave numbers and is connected to the fact that, in the presence of surface tension, there is a so-called “slowest wave”. Additionally, we combine our dispersive estimates with ${{L}^{2}}$ type energy bounds to prove a family of Strichartz estimates.
We study here the water waves problem for uneven bottoms in a highly nonlinear regime wherethe small amplitude assumption of the Korteweg-de Vries (KdV) equation is enforced. It is knownthat, for such regimes, a generalization of the KdV equation (somehow linked to the Camassa-Holm equation) can be derived and justified [Constantin and Lannes, Arch. Ration. Mech. Anal.192 (2009) 165–186] when the bottom isflat. We generalize here this resultwith a new class of equations taking into account variable bottom topographies. Of course, many variable depth KdV equations existing in the literature are recovered as particular cases.Various regimes for the topography regimes are investigated and we prove consistency of these models, as well as a full justificationfor some of them. We also study the problem of wave breaking for our newvariable depth and highly nonlinear generalizations of the KdV equations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.