The cable-driven parallel mechanism (CDPM) is known as an interesting application in industry to pick and place objects owing to its advantages such as large workspaces. In addition to the advantages of this mechanism, there are some challenges to improving performance by considering constraints in different components, such as the behavior of cables, shape, size of the end effector and base, and model of pulleys and actuators. Moreover, the impact of online geometry reconfiguration must be analyzed. This paper demonstrates the impact of these constraints on the performance of reconfigurable CDPM. The methodology is based on the systematic review and meta-analysis guidelines to report the results. The databases used to find the papers are extracted from Scopus and Google Scholar, using related keywords. As a result, the impact of physical constraints on system performance is discussed. A total of 90 and 37 articles are selected, respectively. After removing duplicates and unrelated papers, 88 studies that met the inclusion criteria are selected for review. Even when considering the physical constraints in modeling the mechanism, simplifications in designing a model for the reconfigurable CDPM generate errors. There is a gap in designing high-performance controllers to track desired trajectories while reconfiguring the geometry, and the satisfaction of physical constraints needs to be satisfied. In conclusion, this review presents several constraints in designing a controller to track desired trajectories and improve performance in future work. This paper presents an integrated controller architecture that includes physical constraints and predictive control.