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Abstract
Effect modification occurs when a covariate alters the relative effectiveness of treatment compared to control.
It is widely understood that, when effect modification is present, treatment recommendations may vary by
population and by subgroups within the population. Population-adjustment methods are increasingly used to adjust
for differences in effect modifiers between study populations and to produce population-adjusted estimates in a
relevant target population for decision-making. It is also widely understood that marginal and conditional estimands
for non-collapsible effect measures, such as odds ratios or hazard ratios, do not in general coincide even without
effect modification. However, the consequences of both non-collapsibility and effect modification together are
little-discussed in the literature.

In this article, we set out the definitions of conditional and marginal estimands, illustrate their properties when
effect modification is present, and discuss the implications for decision-making. In particular, we show that effect
modification can result in conflicting treatment rankings between conditional and marginal estimates. This is
because conditional and marginal estimands correspond to different decision questions that are no longer aligned
when effect modification is present. For time-to-event outcomes, the presence of covariates implies that marginal
hazard ratios are time-varying, and effect modification can cause marginal hazard curves to cross. We conclude
with practical recommendations for decision-making in the presence of effect modification, based on pragmatic
comparisons of both conditional and marginal estimates in the decision target population. Currently, multilevel
network meta-regression is the only population-adjustment method capable of producing both conditional and
marginal estimates, in any decision target population.

Highlights

1. What is already known
When using non-collapsible measures of treatment effects, such as odds ratios or hazard ratios, marginal and
conditional estimands have different interpretations and will not generally coincide, even in the absence of
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effect modification. The presence of effect modification means that there may not be a single most effective
treatment for all individuals or subgroups in the population.

2. What is new
We argue that population-average conditional and marginal estimands both quantify average effectiveness
over a population but correspond to different decision questions, either to maximise the average effect for
individuals in the population, or to minimise (or maximise) average event probabilities respectively. When
effect modification is present, we show that these are no longer aligned and can result in conflicting treatment
rankings. In such cases, making a single treatment decision can result in choosing an inferior treatment for
the majority of individuals, or one with a worse expected number of events overall.

3. Potential impact
We provide recommendations for decision-making in the presence of effect modification, for decisions
based both purely on effectiveness and on cost-effectiveness. ML-NMR is at present the only population
adjustment method that can produce the necessary estimates in any target population of interest. Where
allowable, making decisions by subgroups may result in patients being given a more effective treatment for
them and result in greater cost-effectiveness overall.

1. Introduction

Healthcare decision makers are frequently tasked with selecting the most effective treatment from a
set of two or more possible candidate treatments, either purely in terms of treatment effectiveness
or as a balance of cost-effectiveness. This requires reliable estimates of treatment effects, which are
typically obtained from one or more randomised controlled trials (RCTs). When multiple trials are
available, indirect comparison or network meta-analysis methods are widely used to synthesise all
the evidence in one coherent analysis, even when no single trial compares all relevant treatments of
interest.1–4 Effect modifiers are factors that alter the relative effectiveness of a treatment compared
to control; for example, if a treatment is more effective for patients with more severe disease or with
certain biomarkers. The presence of effect modification has strong implications for healthcare decision-
making. First, meta-analyses, indirect comparisons, and network meta-analyses may be biased if
differences in effect modifiers are not accounted for. Population-adjustment methods such as multilevel
network meta-regression (ML-NMR),5 matching-adjusted indirect comparison (MAIC),6 and simulated
treatment comparison (STC)7–9 aim to adjust for differences between study populations using available
individual patient data (IPD) from one or more studies. These methods are primarily concerned with
adjusting for patient characteristics that may be effect modifiers; study-level effect modifiers related
to the design or context of the trials such as treatment administration or co-treatments are typically
perfectly confounded at the study level and may require alternative adjustment methods. Second,
treatment decisions may differ between populations or between subgroups within a population, and so
estimates of treatment effects must be produced for the relevant decision target population (or subgroup
thereof). Whilst ML-NMR can coherently synthesise networks of any size and produce estimates
in any target population, MAIC and STC are limited to pairwise indirect comparisons between two
studies and can only produce estimates relevant to the population of the aggregate study in the indirect
comparison.

For population-level decision making, we are typically interested in population-average measures
of treatment effects, although as we demonstrate here these may not be sufficient when there is
effect modification. Care is needed to ensure that methods are combining compatible estimates and
to appropriately interpret the results, particularly when the effect measure of interest is non-collapsible,
such as odds ratios or hazard ratios. A summary effect measure is non-collapsible when the population-
average marginal effects cannot be expressed as a weighted average of the individual- or subgroup-
specific conditional effects.10–13 The result is that conditioning on a covariate that is prognostic of
outcome in the analysis model moves the treatment effect estimate and fundamentally changes its
interpretation, even without interaction or effect modification.
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An estimand defines the exact treatment effect of interest; the statistical method used to estimate
the estimand is an estimator, and the numerical value computed by the estimator is an estimate.
To date, there has been discussion and disagreement in the literature over whether population-
average conditional or marginal estimands are more suitable for population-level decision-making
based on effectiveness—including between the authors of this article. Some of the authors have
previously argued that targeting the conditional estimand is more desirable, due to increased power
to detect treatment effects and differences, resulting in a more distinct ranking of treatments14; others
have previously argued that the population-average marginal estimand should always be targeted
for population-level decision-making, and that the target estimand should be selected based on its
relevance to the research question of interest and the decision-making problem.15 However, both of
these arguments so far have not recognised a fundamental issue: the conditional and marginal estimands
correspond to two distinct decision questions that are not aligned when effect modification is present
and may give a different ranking of treatments.

In this article, we aim to clarify the different estimands, their interpretation, and implications for
decision making on the basis of effectiveness and cost-effectiveness. We focus primarily on the context
of population-adjusted indirect comparisons and evidence syntheses, although the arguments apply
equally to any context where non-collapsible effect measures are used and effect modification is present,
including the analyses of single RCTs and generalising/transporting RCTs to target populations. We
begin by setting out terminology and defining conditional and marginal estimands for non-collapsible
effect measures with a binary outcome. We describe a range of current population adjustment
approaches and the estimands that they target. Using a worked example, we then demonstrate
the conflict between population-average conditional and marginal estimands when there is effect
modification, which we interpret in the context of decision-making. We then make recommendations
for decision-making in the presence of effect modification, before concluding with a discussion.

2. Defining conditional and marginal estimands

Consider a binary outcome that occurs with event probability 𝜋𝑖𝑘 (𝑃) for an individual i receiving
treatment 𝑘 = 𝐴, 𝐵, . . . in population P with covariates 𝒙𝑖𝑘 (𝑃) , under the following model:

𝑔(𝜋𝑖𝑘 (𝑃) ) = 𝜂𝑘 (𝑃) (𝒙𝑖𝑘 (𝑃) ) = 𝜇 (𝑃) + 𝒎(𝒙𝑖𝑘 (𝑃) )
T(𝜷1 + 𝜷2,𝑘 ) + 𝛾𝑘 (1)

where 𝑔(·) is a link function that transforms probabilities onto the linear predictor 𝜂𝑘 (𝑃) (·), 𝜇 (𝑃) is the
intercept (baseline risk), 𝒎(·) is a function of the covariates, 𝜷1 are prognostic effects, 𝜷2,𝑘 are effect-
modifying interactions for treatment k, and 𝛾𝑘 is the individual-level conditional treatment effect for an
individual with 𝒙 = 0. We set 𝜷2,𝐴 = 0 and 𝛾𝐴 = 0.

Non-collapsibility depends on the choice of link function 𝑔(·), and in particular on whether the
function

ℎ𝑎𝑏 (𝜋, 𝒙) = 𝑔−1 (𝑔(𝜋) + 𝒎(𝒙)T(𝜷2,𝑏 − 𝜷2,𝑎) + 𝛾𝑏 − 𝛾𝑎
)

(2)

is linear in 𝜋.12,13 The function ℎ𝑎𝑏 (·, ·), maps the event probabilities on one treatment a to event
probabilities on another treatment b. Daniel et al.13 term ℎ𝑎𝑏 (𝜋, 𝒙) the characteristic collapsibility
function (CCF), and consider the case where there is no effect modification (𝜷2,𝑘 = 0 for all k) so the
CCF no longer depends on the covariates 𝒙. When the CCF is not linear in 𝜋, the corresponding effect
measure is not collapsible; this is the case for example when 𝑔(·) is the logit or probit link function,
which correspond to log odds ratios or probit differences. When the CCF is linear in 𝜋, for example
when 𝑔(·) is the identity or log link function, the corresponding effect measure (risk differences or log
risk ratios, respectively) will be collapsible. However, non-collapsibility is a necessary consequence of
probabilities being bounded between 0 and 1: modelling collapsible effect measures directly can result
in predictions outside of this range, and induces purely mathematical treatment-covariate interactions
to avoid impossible predictions.
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There are several different potential estimands that may be of interest, and these do not typically
coincide for non-collapsible effect measures such as log odds ratios, even in the absence of effect
modification.

The individual-level conditional treatment effects between each pair of treatments b vs. a for an
individual with covariates 𝒙 are given by the difference in the linear predictors on each treatment:

𝛾𝑎𝑏 (𝒙) = 𝜂𝑏 (𝒙) − 𝜂𝑎 (𝒙)

= 𝛾𝑏 − 𝛾𝑎 + 𝒎(𝒙)T(𝜷2,𝑏 − 𝜷2,𝑎).
(3)

This estimand has an individual-specific interpretation, provided that relevant sources of subject-level
heterogeneity are accounted for, and depends on the specific values of any effect modifiers for an
individual. However, whilst these individual-level conditional treatment effects may be of interest
to individual patients, these are not typically the focus for population-level decision making, which
is instead concerned with population-average estimands. A related estimand is the individual-level
conditional effect at the mean covariate values, 𝛾𝑎𝑏 (�̄� (𝑃) ), where �̄� (𝑃) is the mean of 𝒙 in the
population P. Whilst estimates of this estimand are sometimes reported, their interpretation is problem-
atic, especially with discrete covariates since it is impossible for an individual to have the “average”
value; the individual-level conditional effect at the mean is therefore not useful for decision-making.

Population-average conditional treatment effects between each pair of treatments a and b in
population P are obtained by averaging the individual-level treatment effects over the covariate
distribution in the population on the linear predictor scale:

𝑑𝑎𝑏 (𝑃) =
∫
𝔛
𝛾𝑎𝑏 (𝒙) 𝑓(𝑃) (𝒙) 𝑑𝒙

=
∫
𝔛

(
𝛾𝑏 − 𝛾𝑎 + 𝒎(𝒙)T(𝜷2,𝑏 − 𝜷2,𝑎)

)
𝑓(𝑃) (𝒙) 𝑑𝒙

(4)

where 𝔛 is the support of 𝒙 and 𝑓(𝑃) (𝒙) is the joint distribution of 𝒙 in the population. The population-
average conditional treatment effects 𝑑𝑎𝑏 (𝑃) can be interpreted as the average of the individual-level
treatment effects in the population. Calculating (4) requires information on the distribution of effect-
modifying covariates in the population P. In the common special case where 𝒎(𝒙) = 𝒙, the covariate
means �̄� (𝑃) are sufficient to calculate (4) since the linear predictor is linear in the covariates and the
integral simplifies to 𝑑𝑎𝑏 (𝑃) = 𝛾𝑏 − 𝛾𝑎 + �̄�T

(𝑃) (𝜷2,𝑏 − 𝜷2,𝑎), where �̄� (𝑃) is the mean of 𝒙 in the
population P.

The individual-level conditional event probabilities on each treatment, for an individual with
covariates 𝒙, are given by back-transforming the linear predictor onto the probability scale:

𝜋𝑘 (𝑃) (𝒙) = 𝑔−1 (𝜂𝑘 (𝑃) (𝒙)) . (5)

Again, as with the individual-level conditional treatment effects 𝛾𝑎𝑏 (𝑃) , the individual-level conditional
event probabilities are relevant to specific individuals and are not typically the focus for population-
level decision making.

Population-average marginal treatment effects are obtained as a summary of the average event
probabilities on each treatment:

Δ𝑎𝑏 (𝑃) = 𝑔(�̄�𝑏 (𝑃) ) − 𝑔(�̄�𝑎 (𝑃) ) (6)

where

�̄�𝑘 (𝑃) =
∫
𝔛
𝜋𝑘 (𝑃) (𝒙) 𝑓(𝑃) (𝒙) 𝑑𝒙

=
∫
𝔛
𝑔−1(𝜂𝑘 (𝑃) (𝒙)) 𝑓(𝑃) (𝒙) 𝑑𝒙

(7)
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is the average event probability on each treatment. The population-average marginal treatment effects
Δ𝑎𝑏 (𝑃) can be interpreted in terms of the effect of treatment on the average event probabilities in the
population. Calculating (5), (6), and (7) requires information on the baseline risk 𝜇 (𝑃) in the population
P (see Section 7 for practical considerations); (6) and (7) also require information on the joint covariate
distribution 𝑓(𝑃) (𝒙) in the population P.

Here we have defined the estimands in terms of a generative outcome model. These estimands can
also be defined in terms of potential outcomes without reference to any model; we give definitions in
the potential outcomes framework in Appendix A. We note that, although the estimands can be defined
in a “model-free” manner, all current population adjustment methods with limited IPD will impose an
assumed outcome model of the form (1) in order to form an indirect comparison, either explicitly (e.g.,
STC, ML-NMR) or implicitly (e.g., MAIC).16

The terms “population-average” and “marginal” are often used interchangeably, but here we make
a conceptual distinction. Population-average refers to a quantity that has been averaged over the
population, which may be conditional (like 𝑑𝑎𝑏 (𝑃) ) or marginal (like Δ𝑎𝑏 (𝑃) ), whereas marginal refers
to the scale on which this averaging has taken place (i.e., the probability scale, rather than the linear
predictor scale for conditional quantities). Similarly, it is sometimes said that the population-average
marginal effect is “the effect” of moving a population from one treatment to another. However, we
clearly see that this intervention effect can be defined in multiple ways, depending on the scale on which
the average is taken. The population-average marginal estimand Δ𝑎𝑏 (𝑃) averages the counterfactual
event probabilities on each treatment and compares them, whereas the population-average conditional
estimand 𝑑𝑎𝑏 (𝑃) averages the individual counterfactual treatment effects.

For population-level decision-making, often the decision is made based on cost-effectiveness rather
than purely effectiveness, such as in health technology assessment. In this case, the estimands above
are not of direct interest, but are instead considered inputs to a cost-effectiveness model that evaluates
the expected net benefit on each treatment. For now, we consider only effectiveness decisions based on
𝑑𝑎𝑏 (𝑃) or Δ𝑎𝑏 (𝑃) , and we revisit cost-effectiveness decisions in Section 5.

3. Population adjustment methods

In an ideal scenario, IPD would be available from every study, in which case the “gold standard”
approach is an IPD network meta-regression which accounts for differences in effect modifiers between
studies and can produce population-average conditional or marginal treatment effect estimates in any
population of interest (including external target populations) via equations (4) and (6).17–20 However,
this scenario is uncommon in many practical applications, for example in health technology assessment
where a company making a submission to an agency such as the National Institute for Health and Care
Excellence in England has IPD from their own study or studies, but only published aggregate data
from their competitors’. Population adjustment methods are designed with this limited-IPD scenario
in mind, and aim to use IPD available from a subset of studies to account for differences in the
distribution of effect modifiers between studies.16,21 Different population adjustment methods target
different estimands, and produce estimates that are relevant to different target populations; these are
summarised in Table 1.

ML-NMR is a generalisation of the IPD network meta-regression framework to incorporate
aggregate data, by integrating the individual-level model over each aggregate study population (as
in equation (7)).5 This approach avoids aggregation bias, unlike approaches to combining IPD and
aggregate data in network meta-regression that simply “plug in” mean covariate values for the aggregate
studies into the individual-level model.22–24 ML-NMR combines evidence at the level of the individual
conditional treatment effects, and can be used to produce estimates of both conditional and marginal
estimands following equations (4) and (6), in any target population of interest.5,14 The marginalisation
integrals (7) for each aggregate study are typically calculated using efficient quasi-Monte Carlo
numerical integration, which can also be used to produce estimates for external target populations with
a given covariate distribution.5 The multinma R package implements ML-NMR models for a range of
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Table 1. Evidence synthesis and population adjustment methods, and the estimands and target
populations targeted by each.

Method Estimand Target population

(Network) meta-analysis or
indirect comparison

Marginal Average/common
population of all included
studies

IPD network
meta-regression

Conditional or marginal Any

ML-NMR Conditional or marginal Any
MAIC Marginal Single aggregate study
STC (plug-in means) Neither, typically combines

incompatible conditional and
marginal estimates

Single aggregate study

STC (simulation) Marginal Single aggregate study
STC (G-computation) Marginal Single aggregate study
NMI Neither, typically combines

incompatible conditional and
marginal estimates

Any

Note: Abbreviations: IPD, individual patient data; ML-NMR, multilevel network meta-regression; MAIC, matching-adjusted indirect comparison;
STC, simulated treatment comparision; NMI, network meta-interpolation.

outcome types, as well as full-IPD and aggregate data only network meta-analysis as special cases, and
provides functionality to produce estimates of all of the different estimands defined in Section 2.25

MAIC is a weighting approach, where the method of moments is used to estimate weights that match
covariate means or higher order moments in an IPD study to those reported in an aggregate study.6
MAIC targets the population-average marginal estimand (6), but since no conditional regression model
is fitted this bypasses the need to evaluate any marginalisation integral (equation (7)) entirely. MAIC can
only produce estimates relevant to the aggregate study population in a two-study indirect comparison.16

STC is a regression adjustment approach that fits a regression model in an IPD study and uses
this to predict outcomes in an aggregate study population.7 The most common form of STC typically
combines a conditional estimate from the IPD study, obtained by plugging-in mean covariate values to
equation (3), with a marginal estimate as reported by the aggregate study, which are incompatible and is
thus biased against both the population-average conditional (4) and marginal (6) estimands.14,15 Plug-
in means STC should therefore be avoided. Other forms of STC are available that avoid this problem
and target the population-average marginal estimand via simulation (to evaluate equations (6) and (7)),
however these incur additional sampling variation by trying to simulate a limited number of participants
in the aggregate trial.7 All forms of STC can only produce estimates relevant to the aggregate study
population in a two-study indirect comparison.16

A more sophisticated form of STC based on G-computation addresses several of the issues with
other forms of STC.9 G-computation STC targets the population-average marginal estimand (6), fitting
a regression model in an IPD study, and evaluating the marginalisation integral (7) over an aggregate
study population using simulation (parametric G-computation). Uncertainty is fully quantified by
implementing the approach in a Bayesian framework.9 However, like other forms of STC, this
approach can only produce estimates relevant to the aggregate study population in a two-study indirect
comparison.9 Similar simulation-based STC approaches have recently been published.26,27

The key assumption made by all population adjustment methods in a connected network of
comparisons (so-called anchored population-adjusted indirect comparisons) is conditional constancy
of relative effects.16 This requires all effect modifiers to be known and appropriately adjusted for,
such that 𝒙 includes all effect modifiers and their functional form 𝒎(𝒙) in the outcome model (1) is
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correctly specified. For regression-based approaches like ML-NMR and STC, this model specification
is explicit. For MAIC, the choice of covariate moments to use for matching implies the form of the
underlying outcome model (1); for example, matching only on covariate means leads to 𝒎(𝒙) being
linear in 𝒙. In a disconnected network or with single-arm studies, unanchored population-adjusted
indirect comparisons may be created, relying on the assumption of conditional constancy of absolute
effects. This is a much stronger assumption, which requires producing accurate predictions of absolute
outcomes accross populations, and is widely considered very difficult to meet.16

Population adjustment analyses are often required to make simplifying assumptions for identifiabil-
ity, most commonly invoking the shared effect modifier assumption, which states that effect modifier
interactions are equal for a set of treatments; that is 𝜷2,𝑘 = 𝜷2,T for all treatments k in the set T .
This assumption may be reasonable if treatments in T are from the same class and share a mode of
action, otherwise this assumption is unlikely to hold; this needs to be considered on a case-by-case
basis.16 For MAIC and STC, with a continuous outcome and a linear outcome model, making the
shared effect modifier assumption for treatments B and C means that the estimated relative treatment
effect Δ𝐵𝐶 (𝐴𝐶) = Δ𝐵𝐶 is constant across populations, and can be applied in any target population and
not just the 𝐴𝐶 trial population. For other outcomes and outcome models, however, this assumption is
not sufficient to make the marginal effect Δ𝐵𝐶 (𝐴𝐶) transportable, as this marginal effect is specific to
the distribution of covariates and baseline risk in the 𝐴𝐶 population. For ML-NMR, the shared effect
modifier assumption may be used in smaller networks to identify the model in the absence of sufficient
data, for example in a two-study indirect comparison.5 ML-NMR can use this assumption regardless
of the outcome type or outcome model, since it is applied to the individual-level conditional outcome
model. If this assumption does not hold and the model cannot be identified via other means (e.g.,
external information to inform prior distributions for the interactions or other structural assumptions
about interactions), then ML-NMR is limited to producing estimates in the aggregate study population,
like MAIC and STC. In even moderately-sized networks, ML-NMR may allow the shared effect
modifier assumption to be assessed or removed entirely.28 We examine the shared effect modifier
assumption further in Section 4.3.

Network meta-interpolation (NMI) is different to other regression-based approaches; whilst an
outcome regression model is defined, this model is not estimated directly. Instead, published subgroup
analyses from each trial are “interpolated” to a specific target population by solving equations based
on the best linear unbiased predictor, and then these adjusted estimates are combined in a standard
NMA.29 The motivation of NMI is to produce population-adjusted estimates without making the shared
effect modifier assumption, by using additional information in the form of subgroup analyses from
all studies.5,16 However, NMI incurs similar biases to plug-in means STC, as the reported study-
level treatment effect estimates in trial publications are unlikely to be compatible with the conditional
treatment effect estimates required by NMI to perform interpolation. NMI therefore typically mixes
incompatible estimates within the model (within studies, as opposed to across studies for plug-in means
STC), and is thus biased against both the conditional and marginal estimands. Furthermore, since the
outcome regression model is not fully estimated, it is not possible for NMI to produce population-
average marginal treatment effects or absolute predictions (e.g., average event probabilities). In certain
specific scenarios (i.e., binary covariates and linear outcome models) NMI does appear promising;
however, the properties and performance of NMI are not yet fully understood, and simulation studies
have not directly investigated bias or adequacy of variance estimation.

Standard network meta-analysis, pairwise meta-analysis, and indirect comparison methods combine
aggregate data from each study without adjusting for covariates, targeting a population-average
marginal estimand. The constancy of relative effects assumption is required, meaning that there is (on
average) no imbalance in effect modifiers between populations. Balanace in baseline risk and prognostic
factors is also required unless the outcome is continuous and the outcome generating model is linear in
the covariates, as these also modify the marginal effect estimates. The target population is an average of
the included study populations, which are typically assumed to all be representative of a single common
population.
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4. Example

To illustrate the issues that arise with non-collapsible effect measures when there is effect modification,
we consider a simple example with a single covariate x that is both prognostic of outcome and effect
modifying, uniformly distributed in the population between −1 and 1, and binary outcomes on three
treatments 𝑘 = 𝐴, 𝐵, 𝐶 that are modelled on the log odds ratio scale using Equation (1) with the logit
link function 𝑔(𝜋) = logit(𝜋) and 𝑚(𝑥) = 𝑥.

4.1. Effect modification can result in conflicting rankings

It is well-understood that the magnitudes of population-average conditional and marginal effects 𝑑𝑎𝑏 (𝑃)
and Δ𝑎𝑏 (𝑃) will typically differ, even in the absence of effect modification.10–13 However, when there
is effect modification the direction of effect can also differ between 𝑑𝑎𝑏 (𝑃) and Δ𝑎𝑏 (𝑃) , resulting in
conflicting treatment rankings. It is straightforward to find values of the coefficients in Equation (1)
where this occurs, for example 𝜇 (𝑃) = 0, 𝛽1 = −1, 𝛽2,𝐵 = −3, 𝛽2,𝐶 = −1, 𝛾𝐵 = −4, 𝛾𝐶 = −3.
This results in population-average conditional treatment effects 𝑑𝐴𝐵 (𝑃) = −4 and 𝑑𝐴𝐶 (𝑃) = −3 (i.e.,
B better than C for reducing a harmful outcome), but population-average marginal treatment effects
Δ𝐴𝐵 (𝑃) = −2.36 and Δ𝐴𝐶 (𝑃) = −2.49 (i.e., C better than B). This is because treatment C results in a
lower average event probability overall: �̄�𝐵 (𝑃) = 0.087, �̄�𝐶 (𝑃) = 0.077 (and �̄�𝐴(𝑃) = 0.5).

Basing a decision on these population-average marginal treatment effects would result in choosing
treatment C, but 75% of the population are given an inferior treatment and are expected to do better on
treatment B (Figure 1). On the other hand, basing a decision on these population-average conditional
treatment effects would result in choosing treatment B, but a lower expected number of events 𝑁�̄�𝑘 (𝑃)
(in a population of size N) would be achieved by treatment C.

4.2. Marginal ranks depend on baseline risk and prognostic factors

Furthermore, the population-average marginal treatment effects and rankings are dependent on the
baseline risk 𝜇 (𝑃) , as well as the distribution of the covariate x (even if it is only prognostic), but

Figure 1. Individual-level log odds ratios 𝛾𝐴𝐵 (𝑥) and 𝛾𝐴𝐶 (𝑥) for treatments B and C compared to A,
over the range of the covariate x in the population.
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Figure 2. Population-average marginal (Δ𝐴𝐵 (𝑃) and Δ𝐴𝐶 (𝑃) ) and conditional (𝑑𝐴𝐵 (𝑃) and 𝑑𝐴𝐶 (𝑃) )
log odds ratios for treatments B and C compared to A, for a range of values of the baseline risk 𝜇 (𝑃) .

the population-average conditional treatment effects and rankings only change when the distribution of
effect-modifying covariates changes. Figure 2 shows the population-average conditional and marginal
treatment effects for a range of values of the baseline risk 𝜇 (𝑃) . The population-average conditional
treatment effects 𝑑𝑎𝑏 (𝑃) are constant over all values of the baseline risk, but the population-average
marginal treatment effects Δ𝑎𝑏 (𝑃) change depending on the baseline risk and switch ranks. Also note
that the widely-known result that conditional effects are always further from the null than marginal
effects12,13 does not hold when there is effect modification; here the marginal log odds ratio for
treatment C is further from the null for 𝜇 (𝑃) ≥ 4.4. Consequently, the corollary result that power is
always greater for conditional effects also does not hold when there is effect modification.

The population-average marginal effects change because changing the baseline risk changes the
individual event probabilities (Figure 3), which are averaged over the population to obtain �̄�𝑘 (𝑃) and
the marginal effects.

4.3. The shared effect modifier assumption

We see in Figure 3 that the curves of individual-level event probabilities 𝜋𝑘 (𝑃) (𝑥) by covariate x on each
treatment intersect. This crossing of event probability curves due to effect modification is the reason
that the conditional and marginal treatment effects can give different rankings. If there is no effect
modification then the individual-level log odds ratios between all treatments are constant (Figure 4a),
the event probability curves cannot cross (Figure 4b), and the conditional and marginal rankings and
decision questions are aligned.

Moreover, the individual event probability curves of two treatments cannot cross if the effect
modifier interaction coefficients are the same for these two treatments; for example, if 𝛽2,𝐵 = 𝛽2,𝐶
(Figure 5b). In this situation the individual-level odds ratio between these two treatments is again
constant (the curves in Figure 5a are parallel). The assumption that effect modifier interaction
coefficients are the same for a set of treatments is called the shared effect modifier assumption (see
Section 3).16,21 The shared effect modifier assumption may sometimes be used for ML-NMR when
there are insufficient data to estimate separate interaction terms for each treatment, for example in a
two-study indirect comparison, in order to produce estimates for populations other than the aggregate
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Figure 3. Individual event probabilities 𝜋𝑘 (𝑃) (𝑥) on each treatment over the range of covariate values
x in the population, for a range of values of the baseline risk 𝜇 (𝑃) .

Figure 4. Individual-level log odds ratios 𝛾𝐴𝑘 (𝑥) (a) and event probabilities 𝜋𝑘 (𝑃) (𝑥) (b) when there
is no effect modification (𝛽2,𝐵 = 𝛽2,𝐶 = 0), over the range of the covariate x in the population.
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Figure 5. Individual-level log odds ratios 𝛾𝐴𝑘 (𝑥) (a) and event probabilities 𝜋𝑘 (𝑃) (𝑥) (b) when the
shared effect modifier assumption is made for treatments B and C (𝛽2,𝐵 = 𝛽2,𝐶 = −4), over the range
of the covariate x in the population.

study population.5 Pairs of treatments between which the shared effect modifier assumption is not made
can have individual odds ratios and event probability curves that cross; in Figure 5a the individual odds
ratio for C (compared to A) intersects the line of no effect, and as a result the event probability curves
for A and C cross. This means that, even if the shared effect modifier assumption is made for treatments
B and C, the marginal ranking of treatment A can still change. With a continuous outcome and linear
outcome model, the shared effect modifier assumption can also be used by MAIC and STC in order to
produce relative effect estimates that are relevant to a target population other than that of the aggregate
study in the indirect comparison, since then Δ𝐵𝐶 (𝑃) = 𝑑𝐵𝐶 (𝑃) is constant across all populations.16 In
all other cases, the population-average marginal treatment effects Δ𝐵𝐶 (𝐴𝐶) produced by MAIC and
STC (with simulation) are specific to the distributions of covariates and baseline risk in the aggregate
𝐴𝐶 study population, and cannot be transported to another population with different distributions of
covariates or baseline risk.

4.4. An example with a binary covariate in a contingency table

To help further solidify these ideas, we now consider an example with a binary outcome and a single
binary covariate through a contingency table. Consider a trial of four treatments A, B, C, and D,
randomised equally, in a population where the prevalence of a biomarker x is 25%. This biomarker is
prognostic and effect-modifying, and we are interested in reducing occurrence of some harmful event.
Table 2 shows the numbers of individuals who did and did not experience the event, within subgroups
defined by the biomarker x and over the whole population.

In Table 2, we then calculate the population-average marginal odds ratios, subgroup-specific
conditional odds ratios, and population-average conditional odds ratios for each treatment compared
to A. Here, since we have a binary covariate, calculating the population-average conditional odds ratios
via the integral in equation (4) simplifies to taking the weighted average (on the log odds ratio scale)
of the subgroup-specific conditional odds ratios according to the prevalence of the biomarker in the
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etal.Table 2. Contingency table for an illustrative example of four treatments, stratified by a biomarker x.

𝑥 = 0 𝑥 = 1 Overall population

Treatment Events Non-events Events Non-events Events Non-events

A 202 548 156 94 358 642

B 89 661 42 208 131 869

Marginal OR (131/869)/(358/642) = 0.27
Conditional OR (89/661)/(202/548) = 0.37 (42/208)/(156/94) = 0.12 exp(0.75 × log(0.37) + 0.25 × log(0.12)) = 0.28

C 13 737 144 106 157 843

Marginal OR (157/843)/(358/642) = 0.33
Conditional OR (13/737)/(202/548) = 0.05 (144/106)/(156/94) = 0.82 exp(0.75 × log(0.05) + 0.25 × log(0.82)) = 0.10

D 137 613 6 244 143 857

Marginal OR (143/857)/(358/642) = 0.30
Conditional OR (137/613)/(202/548) = 0.61 (6/244)/(156/94) = 0.01 exp(0.75 × log(0.61) + 0.25 × log(0.01)) = 0.24

Note: Population-average marginal odds ratios, subgroup-specific conditional odds ratios, and population-average conditional odds ratios are calculated vs. treatment A.
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population. Based on the population-average marginal odds ratios, treatment B is the best, as it results
in the lowest number of events overall. However, the population-average conditional odds ratios give a
different ranking: treatments C and D are both ranked better than B, with treatment C being the best.

Treatment C is the most effective treatment for most individuals in this population, i.e., in the
biomarker-negative subgroup (𝑥 = 0) which makes up 75% of the population. This leads to C having
the best population-average conditional odds ratio. However, C is less effective than B for the smaller
biomarker-positive subgroup (𝑥 = 1); the increased number of events in this subgroup result in a higher
number of events overall on treatment C than B, and hence a worse population-average marginal odds
ratio.

Treatment D is less effective than B for most of this population—the biomarker-negative subgroup
(𝑥 = 0)—and has a higher event rate overall. The population-average marginal odds ratio for treatment
D is therefore worse than for treatment B. However, D is highly effective for the biomarker-positive
subgroup (𝑥 = 1), to an extent that is sufficient to give a better population-average conditional odds
ratio than treatment B.

We see here how the population-average conditional and marginal effects weigh up effectiveness
over the population differently. The population-average marginal effects weigh up the expected number
of events overall, i.e., the average is taken on the probability scale. The population-average conditional
effects weigh up the expected individual or subgroup effectiveness over the population, i.e., the average
is taken on the additive linear predictor scale.

As shown earlier in Section 4.1, we again see here that the treatment with the best population-
average marginal effect (B) is not always the best treatment for the majority of individuals when effect
modification is present. Furthermore, when covariates are discrete or non-symmetrically distributed, or
treatment or covariate effects are non-linear, the treatment with the best population-average conditional
effect is not always the best treatment for the majority of individuals. In this example with a binary
covariate, treatment D has a better population-average conditional effect than treatment B, but D is less
effective than B for most individuals.

Selecting the single treatment B with the best population-average marginal effect results in a decision
that minimises the number of events overall. However, the rank conflict with the population-average
conditional effects indicates that there is substantive differential effectiveness within the population,
and a decision stratified by subgroup may be closer to optimal. In this case, treatment B is inferior
for every individual in the population: treating biomarker-negative individuals with C and biomarker-
positive individuals with D is the optimal decision. This stratified treatment decision would result in
the least number of events overall, a population-average marginal odds ratio of (19/981)/(358/642) =
0.03, and a population-average conditional odds ratio of exp(0.75×log(0.05)+0.25×log(0.01)) = 0.04.

5. Interpretation

Rank-switching between the population-average conditional and marginal effects can only occur in
the presence of effect modification, between treatments that have different interaction terms (i.e.,
no shared effect modifier assumption), and when this causes treatment ranks to change across
individuals/subgroups in the population. We give a formal proof of this statement in Appendix B.
However to see this intuitively, consider that rankings based on the population-average marginal
treatment effects Δ𝑎𝑏 (𝑃) can only change compared to the population-average conditional treatment
effects 𝑑𝑎𝑏 (𝑃) if the individual event probabilities on each treatment 𝜋𝑘 (𝑃) (𝒙) change ranks within the
population (i.e., if the event probability curves cross as in Figure 3). This can happen if and only if
the individual-level treatment effects 𝛾𝐴𝑘 (𝒙) change ranks within the population (i.e., if the individual
treatment effect curves cross as in Figure 1), which can happen if and only if there is effect modification
between the two treatments.

It is well-understood that population-average marginal treatment effects are population-specific, and
depend on the distributions of baseline risk and prognostic factors, as well as any effect modifiers.
However, when there is effect modification we have seen that the marginal treatment rankings can also
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change—even if the only factors that change are those that do not affect individual treatment effects
(baseline risk, prognostic factors). Conditional population-average treatment effects and rankings will
only change depending on the distribution of effect modifiers, and do not depend on baseline risk or
prognostic factors.

The population-average conditional and marginal effects have different interpretations, and cor-
respond to different decision questions regarding effectiveness. The population-average conditional
treatment effects represent the average of the individual treatment effects experienced in the population.
They answer the question “Which treatment has the greatest effect for individuals, on average, in this
population?” The population-average marginal treatment effects (whether odds ratios, risk ratios, or
risk differences) quantify effectiveness in terms of the average event probabilities on each treatment,
and for non-collapsible effect measures, by definition, do not represent any average of the individual
or subgroup treatment effects experienced in the population, even without effect modification. They
answer the question “Which treatment minimises (or maximises) the marginal average event probability
in this population?”

These two decision questions are equivalent except when there is effect modification. When there
is effect modification and the individual treatment effects cross within the population, the two can
give different rankings. As a result, a decision based on population-average marginal treatment effects
to obtain the minimum (or maximum) average event probability can result in choosing a treatment
that is inferior for the majority of individuals in the population. Conversely, a decision based on
population-average conditional treatment effects to obtain the most effective treatment on average for
each individual in the population can result in choosing a treatment that gives a higher (or lower)
average event probability than another treatment option.

Either of these decision questions and estimands might be justified. Basing a decision on the
population-average conditional effects means that decision-makers want to maximise the benefit,
on average, for each individual in the population. Basing a decision on the population-average
marginal effects means that decision-makers want to minimise (or maximise) the expected number
of events over the population, for example if (non-)events have a high associated cost or disutility.
Indeed, in many cases decision-makers may wish to satisfy both decision questions; however, when
there is effect modification there may not be a single treatment that achieves this over the entire
population.

For cost-effectiveness decisions, neither of the above decision questions or estimands are of direct
interest. Instead, the decision question is “Which treatment maximises the expected net benefit in this
population?”, and the relevant quantity is the expected net benefit (NB) on each treatment E(NB𝑘 (𝑃) ).
The net benefit is typically a function 𝜑𝑘 (𝑃) (·, ·) of the average event probabilities �̄�𝑘 (𝑃) , or the
individual event probabilities 𝜋𝑘 (𝑃) (𝒙) for the distribution of the covariates in the population, as well
as other parameters 𝜽𝑘 (𝑃) (𝒙) such as resource use costs and adverse events which may also vary
over the population. When there is patient heterogeneity, such as that caused by effect modification, a
cost-effectiveness analysis should handle this appropriately by averaging (integrating) net benefit over
the population, which necessitates constructing the net benefit as a function of the individual event
probabilities 𝜋𝑘 (𝑃) (𝒙)30:

NB𝑘 (𝑃) =
∫
𝔛
𝜑𝑘 (𝑃)

(
𝜋𝑘 (𝑃) (𝒙), 𝜽𝑘 (𝒙)

)
𝑓 (𝒙) 𝑑𝒙. (8)

In simple cases this integral may be evaluated directly, however discrete event simulation is
often used instead to construct and evaluate such cost-effectiveness models.31,32 Comparing
equation (8) with equations (4) and (7), we see that the population-average conditional estimand
corresponds to a net benefit function that is linear in individual treatment effects 𝜑𝑘 (𝑃) (𝒙) =
𝛾𝐴𝑘 (𝒙) and the population-average marginal estimand corresponds to a net benefit function that
is linear in individual event probabilities 𝜑𝑘 (𝑃) (𝒙) = 𝜋𝑘 (𝑃) (𝒙), when effectiveness is the only
consideration.
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6. Considerations for survival outcomes

Similar arguments can be applied to survival or time-to-event outcomes analysed using proportional
hazards models, since hazard ratios are also non-collapsible. Consider a general proportional hazards
model where the hazard function for an individual i receiving treatment k in population P with
covariates 𝒙𝑖𝑘 (𝑃) at time t is

ℎ𝑘 (𝑃) (𝑡 | 𝒙𝑖𝑘 (𝑃) ) = ℎ0(𝑃) (𝑡) exp
(
𝜂𝑘 (𝑃) (𝒙𝑖𝑘 (𝑃) )

)
(9a)

𝜂𝑘 (𝑃) (𝒙𝑖𝑘 (𝑃) ) = 𝜇 (𝑃) + 𝒙T

𝑖𝑘 (𝑃) (𝜷1 + 𝜷2,𝑘 ) + 𝛾𝑘 (9b)

for some baseline hazard function ℎ0(𝑃) (𝑡), with corresponding survival function 𝑆𝑘 (𝑃) (𝑡 | 𝒙𝑖𝑘 (𝑃) ) =

exp(−
∫ 𝑡

0 ℎ(𝑢) 𝑑𝑢).
The population-average marginal hazard ratio Δ𝑎𝑏 (𝑃) (𝑡) is

Δ𝑎𝑏 (𝑃) (𝑡) =
ℎ̄𝑏 (𝑃) (𝑡)

ℎ̄𝑎 (𝑃) (𝑡)
, (10)

the ratio of the marginal hazard functions

ℎ̄𝑘 (𝑃) (𝑡) =

∫
𝔛
𝑆𝑘 (𝑃) (𝑡 | 𝒙) ℎ𝑘 (𝑃) (𝑡 | 𝒙) 𝑓(𝑃) (𝒙) 𝑑𝒙

𝑆𝑘 (𝑃) (𝑡)
, (11)

where 𝑆𝑘 (𝑃) (𝑡) is the population-average marginal survival function (or standardised survival function)

𝑆𝑘 (𝑃) (𝑡) =
∫
𝔛
𝑆𝑘 (𝑃) (𝑡 | 𝒙) 𝑓(𝑃) (𝒙) 𝑑𝒙. (12)

The marginal hazard function ℎ̄𝑘 (𝑃) (𝑡) can be considered a weighted average of the individual-
level hazard functions, weighted by the probability of surviving to time t. Notably, the population-
average marginal hazard ratio Δ𝑎𝑏 (𝑃) (𝑡) is time-varying, as well as depending on the shape of the
baseline hazard function ℎ0(𝑃) (𝑡), and the distributions of baseline hazard and all prognostic and effect
modifying covariates. This means that, if covariates are present, proportional hazards mathematically
cannot hold at the marginal level. This is the case whether the covariates are prognostic or effect
modifying; however, an argument analogous to that in Appendix B shows that effect modification is
necessary for the marginal hazard functions to cross (assuming that covariates are balanced between
arms at baseline, and that the same baseline hazard function ℎ0(𝑃) (𝑡) applies in both arms).

The population-average conditional log hazard ratio 𝑑𝑎𝑏 (𝑃) under this model is again given by
equation (4)—the average treatment effect over the population, taken on the log hazard scale. Again,
𝑑𝑎𝑏 (𝑃) depends only on the distribution of effect modifiers, not on the shape of the baseline hazard
function, or the distributions of baseline hazard or prognostic factors, and is not time-varying.

As an example, consider a Weibull proportional hazards model for three treatments, A, B, and C,
with a single covariate x that is uniformly distributed in the population between −1 and 1, with survival
and hazard functions

𝑆𝑘 (𝑃) (𝑡 | 𝑥) = exp
(
−𝑡𝜈(𝑃) exp(𝜂𝑘 (𝑃) (𝑥))

)
(13a)

ℎ𝑘 (𝑃) (𝑡 | 𝑥) = 𝜈 (𝑃) 𝑡
𝜈(𝑃) −1 exp(𝜂𝑘 (𝑃) (𝑥)). (13b)

For simplicity, we use a common shape parameter 𝜈 (𝑃) = 2 for all three treatments, and set 𝜇 (𝑃) =
−1, 𝛾𝐵 = log(0.6), and 𝛾𝐶 = log(0.5). The covariate x we set to be prognostic of survival with
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Figure 6. Population-average marginal survival curves with a single uniformly-distributed covariate
that is (a) prognostic only, (b) prognostic and effect modifying.

𝛽1 = log(0.25). We then consider two scenarios, one where x is only prognostic so 𝛽2,𝐵 = 𝛽2𝐶 = 0, and
the other where x is moderately effect modifying, 𝛽2,𝐵 = log(0.7) and 𝛽2,𝐶 = log(0.9). The population-
average marginal survival curves under this set-up are shown in Figure 6.

The corresponding population-average conditional and marginal hazard ratios are shown in Figure 7.
The presence of a prognostic covariate means that the population-average marginal hazard ratios are no
longer constant over time; proportional hazards does not hold at the marginal level. When this covariate
is also effect modifying, the population-average marginal hazard ratios can also change ranks over
time. Figure 8 demonstrates that the population-average marginal hazard ratios depend on the shape
of the baseline hazard function and the distribution of baseline hazard, whereas the population-average
conditional hazard ratios do not.

With survival outcomes, the key quantities for decision-making are typically the population-average
marginal survival functions 𝑆𝑘 (𝑃) (𝑡) on each treatment and summaries thereof, such as survival
probabilities at clinically relevant time points, median survival times, or (restricted) mean survival
times. 𝑆𝑘 (𝑃) (𝑡) is also the typically the primary input to an economic model for decisions based on
cost-effectiveness.

7. Recommendations for decision-making in the presence of effect modification

Decision-makers should specify a priori the target population and decision question that are of
interest, and analysts should ensure that the corresponding estimand is appropriately targeted—be
that population-average conditional or marginal estimates for effectiveness decisions, or the necessary
inputs to an economic model for cost-effectiveness decisions. In a health technology assessment
context, guidance for submissions to the National Institute of Health and Care Excellence (NICE) in
England states that the choice of effect modifiers must be pre-specified prior to analysis, clinically
plausible, and justified through empirical evidence, expert opinion, or systematic review.16,33 Similarly,
section 4.9 of the NICE health technology evaluation manual expresses a preference for pre-specified
identification of subgroups with biological plausibility, and warns against post-hoc “dredging” for
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Figure 7. Population-average conditional and marginal hazard ratios vs. treatment A over time with a
single uniformly-distributed covariate that is (a) prognostic only, (b) prognostic and effect modifying.

Figure 8. Population-average conditional and marginal hazard ratios vs. treatment A over time,
varying (a) the shape of the baseline hazard function 𝜈 (𝑃) , and (b) the distribution of baseline log
hazard 𝜇 (𝑃) .

subgroup effects.33 This applies to subgroups based both on effectiveness (i.e., effect modifiers), and
on other factors such as costs, baseline risk, or adverse events. In line with methodological guidance,16

it is advisable that: analyses with and without adjustment for effect modifiers be presented, for example
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standard network meta-analysis alongside a suitable population adjustment method; any modelling
assumptions such as choice of covariates to include be explored in sensitivity analyses; and the extent
of extrapolation should be considered and estimates treated with caution where extrapolation is required
beyond the range of the data.

7.1. Decisions based on effectiveness only

For population decision-making based purely on effectiveness, the relevant estimands are population-
average conditional or marginal treatment effects in the decision target population, for example after
population adjustment. ML-NMR can produce relevant estimates for any decision target population5;
other approaches like MAIC and STC are limited to producing estimates in the population of the
aggregate study in an indirect comparison, which may not represent the decision target population.16

In small networks like a two-study indirect comparison, ML-NMR may make use of an identifying
assumption such as the shared effect modifier assumption to produce estimates for populations other
than the aggregate study population (Section 3). MAIC and STC cannot make use of the shared effect
modifier assumption except for continuous outcomes with a linear outcome model, and are restricted
to producing estimates for the aggregate study population. Only ML-NMR at present can produce
estimates of both conditional and marginal estimands. The population-average conditional and marginal
estimands can result in conflicting rankings when there is effect modification, and in some cases a
decision-maker may be forced to choose between a treatment that is inferior for the majority of the
population or one that results in a worse expected number of events overall. If this is a concern, then
the only way to resolve this conflict and realign the two effectiveness decision questions and estimands
is to allow different decisions within subgroups based on covariate values.

With just one effect modifier, it is straightforward to visualise the impact on decisions by plotting
the individual treatment effects against the covariate (as in Figure 1), but with multiple effect modifiers
this quickly becomes infeasible. It is possible to mathematically determine the boundaries between
different optimal treatment choices in the L-dimensional covariate space, where L is the number of
effect-modifying covariates. However, this is likely to result in complex decisions that may be difficult
to implement and hard to justify.

We propose a more pragmatic approach, where decision-makers consider both the population-
average conditional and marginal treatment effects. If the respective rankings agree, then there is no
substantial conflict to resolve and a single decision might be justified for the entire population. This does
not rule out the possibility that smaller subgroups might obtain greater treatment benefit or lower (or
higher) average event probabilities from a different decision, but it does mean that the overall decision
is both the most effective on average for each individual in the population and results in the lowest (or
highest) average event probability overall. If the rankings are in conflict, then decision-makers could
attempt to resolve this by considering making decisions for subgroups formed by the combinations
of a small number of effect modifiers (whilst still adjusting for the full set of effect modifiers at the
modelling stage). These chosen effect modifiers should be those that have the most impact on treatment
effects in the population, based both on the strength of the interaction and on the range of covariate
values in the population. The precise cut-points could be based on examining plots of the individual
treatment effects against the effect modifiers in question one covariate at a time, holding the other
covariates at the population means, or they could be guided by clinical reasoning or practice (say if
there are established thresholds for normal vs. high values). Careful selection of subgroups in this
manner is likely to be sufficient to resolve the conflict between decision questions, whilst keeping the
resulting subgroup decisions simple enough for decision-makers to justify and implement.

For example, consider a scenario with two treatments B and C compared to reference A, and
three potential effect modifiers which are distributed in the target population as 𝑥1 ∼ N(0, 12), 𝑥2 ∼

N(0, 0.252), 𝑥3 ∼ Bern(0.8). There is a harmful binary outcome, modelled on the logit scale following
model (1), with coefficients 𝜇 = 0, 𝜷1 = (−2, 1,−0.25)T, 𝜷2,𝐵 = (−3,−4,−0.5)T, 𝜷2,𝐶 = (−1,−2, 0)T,
𝛾𝐵 = −4, and 𝛾𝐶 = −3. The resulting population-average marginal and conditional log odds ratios are
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Figure 9. Example of considering a subgroup decision with three effect-modifying covariates. Each
plot shows the individual-level treatment effects vs. treatment A (solid lines) over each of the covariate
distributions in the population in turn (histograms), holding the other covariates at their population
means.

in conflict, 𝑑𝐵𝐶 = 1.4 and 𝑑𝐵𝐶 = −0.1, so we proceed to consider a decision for subgroups. Plots of
the individual-level treatment effects over each of the covariates in turn, holding the other covariates
at their population means, are shown in Figure 9. Whilst 𝑥2 has the strongest interaction estimate, 𝑥1
leads to greater variation in individual-level treatment effects over the population due to the greater
variation in this covariate, and the individual-level treatment effects change ranks within the range
of 𝑥1 in the population. 𝑥1 is therefore a good candidate for forming subgroups. The individual-level
treatment effects cross at 𝑥1 = −0.7, and making separate decisions for subgroups at this cut-point
(treatment C for 𝑥1 < −0.7 and B for 𝑥1 ≥ −0.7) does resolve the conflict between population-average
marginal and conditional effects (𝑑𝐵𝐶 (𝑥1<−0.7) = −1.2 and Δ𝐵𝐶 (𝑥1<−0.7) = −0.5 in the first subgroup,
𝑑𝐵𝐶 (𝑥1≥−0.7) = 2.2 and Δ𝐵𝐶 (𝑥1≥−0.7) = 0.4 in the second). In many cases it may be more justifiable
to base the precise cut-point(s) on clinical reasoning or practice. For example, in this case if 𝑥1 = 0
represents a clinically-meaningful threshold, forming subgroups around this cut-point also resolves
the conflict (𝑑𝐵𝐶 (𝑥1<0) = −0.2 and Δ𝐵𝐶 (𝑥1<0) = −0.2 in the first subgroup, 𝑑𝐵𝐶 (𝑥1≥0) = 3.0 and
Δ𝐵𝐶 (𝑥1≥0) = 1.6 in the second).

When effect modification is not present, the two decision questions are aligned and both estimands
will give the same ranking of treatments. In a Bayesian setting Bayesian p-values and the precision of
the ranks will be identical between the population-average conditional and marginal effects, since the
action of marginalisation is a monotonic transformation of the posterior about the origin.

7.2. Decisions based on cost-effectiveness

For decisions based on cost-effectiveness, patient heterogeneity (such as that caused by effect
modification) should be handled appropriately by averaging net benefit over the population as in
equation (8).30 Discrete event simulation based on individual or subgroup event probabilities or survival
curves is one suitable approach,31,32 however such models can be complex to develop and evaluate. As
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a result, discrete event simulation is not as widely used as other approaches such as Markov models or
decision trees, which typically do not account for patient heterogeneity and are based on average event
probabilities NB𝑘 (𝑃) = 𝜑𝑘 (𝑃) (�̄�𝑘 (𝑃) , 𝜽𝑘 (𝑃) ) or average survival curves NB𝑘 (𝑃) = 𝜑𝑘 (𝑃) (𝑆𝑘 (𝑃) , 𝜽𝑘 (𝑃) ).
Assuming that the structure of 𝜑𝑘 (𝑃) (·, ·) is maintained between approaches and that any additional
parameters 𝜽𝑘 (𝑃) (𝒙) are averaged over the population in the same way, how different the resulting
expected net benefit is depends on the non-linearity of 𝜑𝑘 (𝑃) (·, ·) with respect to 𝜋𝑘 (𝑃) (𝒙) (due to
Jensen’s inequality), with equality if 𝜑𝑘 (𝑃) (·, ·) is linear in 𝜋𝑘 (𝑃) (𝒙). However, there are likely to also
be structural differences in 𝜑𝑘 (𝑃) (·, ·) between approaches which may introduce further differences
between the results.

Regardless of the cost-effectiveness model chosen, care must be taken to ensure that the relevant
inputs are produced appropriately. In many cases these are the event probabilities on each treatment in
the decision target population, either average �̄�𝑘 (𝑃) or individual 𝜋𝑘 (𝑃) (𝒙). These should be obtained
by applying relevant relative treatment effect estimates (e.g., after population-adjustment into the target
population) to a representative distribution for baseline risk. Evidence for this baseline risk distribution
need not be obtained from the trial(s) used to estimate relative effects; indeed this may ideally be
obtained from a representative registry or cohort study in the decision target population.34 Typically
this baseline risk distribution is on the average event probability �̄�𝑘0 (𝑃) for a given treatment 𝑘0.

To then obtain average event probabilities on all other treatments, one simple approach is to
rearrange equation (6) as �̄�𝑘 (𝑃) = 𝑔−1 (𝑔(�̄�𝑘0 (𝑃) ) + Δ 𝑘0𝑘 (𝑃)

)
and apply population-average marginal

treatment effect estimates to the baseline risk distribution. However, this is only correct if the
population-average marginal effects Δ𝑎𝑏 (𝑃) were produced by marginalising over the same baseline
risk distribution, since these are not transportable across populations with different baseline risks (or
covariate distributions). This means that population adjustment methods like MAIC and STC that
can only estimate population-average marginal treatment effects in the aggregate study population of
an indirect comparison are strictly limited to producing average event probabilities in this aggregate
study population; the population-average marginal estimates are specific to this population, and cannot
be applied to another population with a different distribution of baseline risk even if the covariate
distributions are the same.

A more sophisticated approach when a regression model has been used is to instead apply equation
(7), averaging absolute model predictions on each treatment over the target population.5 This requires
that model (1) is estimated for all treatments, which is currently only possible using ML-NMR in
a population adjustment setting. This also requires a distribution on the intercept 𝜇 (𝑃) in the target
population, instead of the baseline risk �̄�𝑘0 (𝑃) ; a procedure for converting between the two by solving
equation (7) for values of 𝜇 (𝑃) given a sample of values for �̄�𝑘0 (𝑃) is given in Phillippo et al.28 Using
this approach, average event probabilities can be produced in any target population of interest; an
example using ML-NMR is given in Phillippo et al.28 In small networks like a two-study indirect
comparison, ML-NMR may make use of an identifying assumption such as the shared effect modifier
assumption to produce estimates for populations other than the aggregate study population (Section 3).

The same considerations apply for cost-effectiveness decisions involving survival outcomes.
Furthermore, since the presence of covariate effects—the very motivation for performing population
adjustment—implies that marginal hazard ratios are time-varying, the oft-used practice of applying a
constant hazard ratio for each treatment to a baseline survival function in the economic model is not
appropriate here. Instead, the estimated individual- or subgroup-specific survival curves 𝑆𝑘 (𝑃) (𝑡 | 𝒙)
or population-average survival curves 𝑆𝑘 (𝑃) (𝑡) should be used directly in the modelling. MAIC and
STC can obtain population-average survival curves on all treatments, but only in the population of the
aggregate study. ML-NMR can estimate either individual-level or population-average survival curves
on all treatments, in any population.35 As well as information on the covariate distribution in the target
population, a distribution for the baseline hazard is required. When Kaplan-Meier data are available
in the target population, even on a single treatment arm, this can be used to estimate the appropriate
baseline hazard parameters within the ML-NMR model35; otherwise, baseline hazard estimates could
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be taken from a study in the network where the baseline hazard is deemed to be representative, whilst
still allowing for differences in covariate distributions to be accounted for.

Carrying out a cost-effectiveness analysis does not resolve the fact that making a single treatment
decision for an entire population may be sub-optimal, and that greater cost-effectiveness might be
obtained by allowing different decisions for subgroups.

8. Discussion

In this article, we have argued that population-average conditional and marginal estimands correspond
to different decision questions, either to maximise average effectiveness or to minimise (or maximise)
average event probabilities respectively. We have demonstrated how the presence of effect modification
means that these estimands and decision questions are no longer aligned, and may not correspond
to the same ranking of treatments. Moreover, making a single treatment decision in the presence of
effect modification can result in either selecting an inferior treatment for the majority of individuals,
or selecting a treatment with a worse average event probability overall. Where allowable, making
decisions by subgroups may result in patients being given a more effective treatment for them and result
in greater cost-effectiveness overall. However, identification of valid subgroups is non-trivial; analyses
to detect interactions and subgroups typically have low power, there is a risk of spurious findings
particularly if many candidate factors are considered, and precision will be reduced within subgroups
which may weaken conclusions.

Whether or not rank conflict between population-average conditional and marginal estimates
actually occurs in a given setting depends on a range of factors (as illustrated in Section 4), including the
strength of effect modification, the distribution of the effect modifiers, the distribution of baseline risk,
and the strength and distribution of prognostic factors. Future research could include simulation studies
across a range of realistic scenarios to give better insight into the likelihood of rank conflict occurring
in practice, and the cases where this more likely to occur. We note however that, despite the wide
range of contributing factors, rank conflict can only occur if the individual-level event probabilities or
treatment effects change ranks for individuals within the population (Section 5); that is, there needs to
be a sufficiently large proportion of the population for which the “best” treatment is different. This lends
some practical intuition for when rank conflict may be expected to occur, and motivates our suggestion
to use rank conflict as a simple diagnostic for when subgroup decisions may be desirable.

We have focused the motivation for this article on population-level decision making using
population-adjusted analyses like MAIC or ML-NMR, which typically involve two or more trials and
three or more treatments.16 However, our arguments apply equally to analyses of single trials, and
where there are only two treatments (Section 4.3). Whilst trials do not typically consider adjusting for
effect modifiers as a primary analysis, consideration of effect modifiers is central to generalising or
transporting treatment effects to target populations (typically a marginal estimand is targeted through
a propensity score analysis)36,37; such analyses are therefore subject to exactly the same issues that we
describe here.

In the two-study indirect comparison scenario for which MAIC and STC are proposed, MAIC
and STC (with simulation or G-computation) can produce estimates of population-average marginal
treatment effects relevant to the aggregate study population. Whilst a targeted comparison against
a competitor’s treatment in their study population may be desirable for commercial reasons, such
analyses may not be relevant for decision-making where it is crucial that estimates are produced for
a representative decision target population.16 However, MAIC and STC cannot produce estimates for
another target population of interest, except in the special case of continuous outcomes and a linear
model when the shared effect modifier assumption may be applied (Section 3). In the two-study indirect
comparison scenario, ML-NMR can produce both conditional and marginal estimates relevant to the
aggregate study population, and can produce estimates relevant to any target population of interest
with the use of an additional identifying assumption such as the shared effect modifier assumption
(Section 3). In larger networks, which may often be available in practice,38 ML-NMR may allow
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the shared effect modifier assumption to be assessed or avoided entirely.28 Larger networks where
comparisons are informed by many trials may also allow the impact of effect modifiers to “balance
out”; sparse networks or pairwise indirect comparisons with only one or two trials per comparison are
potentially more vulnerable to bias resulting from effect modifier imbalance across studies.16 On the
other hand, as more classes of treatments are included the potential set of effect modifiers grows larger,
and without sufficient data additional shared effect modifier assumptions may be required within each
class. We note that reliance on such identifying assumptions is only necessary due to the limitations
of the available data, i.e., due to the lack of IPD sharing by manufacturers. IPD meta-regression is the
ideal—but uncommon—special case of ML-NMR where IPD are available from every study, in which
case there are sufficient data to estimate the model without additional identifying assumptions. To be
relevant for decision-making, whichever method is used, estimates must be produced that are relevant
to the decision target population.16

Previous discussion of non-collapsibility, such as the excellent paper by Daniel et al.,13 has
largely focused on scenarios where there is no effect modification. In such cases, there are well-
known results that i) conditional estimands lie further from the null than marginal estimands; ii)
conditional estimators may have reduced precision compared to marginal estimators; iii) the reduction
in precision is outweighed by the increased separation from the null, resulting in increased power for
conditional estimands (as summarised by Daniel et al.13). Whilst comparing precision of population-
average marginal and conditional estimators is not a meaningful comparison of like with like, this
power comparison is meaningful because the two estimands share the same null. However, we have
demonstrated that these results break down when there is effect modification, as the population-average
marginal estimand is no longer always closer to the null—even if the distribution of effect modifiers is
unchanged (Section 4.2).

Whilst for binary outcomes we focused on log odds ratios with a logit link function, the same
issues and arguments apply to other non-collapsible effect measures such as the summary effect from
a probit link model. The same arguments also apply to non-collapsible effect measures for other types
of outcomes. For example, when analysing ordered categorical outcomes using ordered logistic or
probit regression, there is a single summary population-average conditional treatment effect across all
outcome categories, but the population-average marginal treatment effects differ for each category and
the marginal rankings may change between categories.28 This should not be construed as a reason to
prefer modelling collapsible effect measures such as risk differences or log risk ratios directly, e.g., by
the use of an identity or log link function with a binary outome. Such models can result in predicted
probabilities less than 0 or greater than 1, and will induce purely mathematical treatment-covariate
interactions.

For survival or time-to-event outcomes analysed using (log) hazard ratios, we have seen that not
only do population-average marginal hazard ratios depend on the shape of the hazard function and the
distribution of baseline hazard and all prognostic and effect modifying covariates, but they must also
vary over time. Crucially this means that, whenever covariates are present, proportional hazards cannot
hold at the marginal level. Such covariates do not need to be effect modifying or time-varying; even
with purely prognostic baseline covariates the mathematical consequence is that the population-average
marginal hazard ratio is time-varying. A positive consequence of this, however, is that adjustment for
covariates measured only at baseline can be sufficient to address violations of proportional hazards
in unadjusted models (a phenomenon we have noted previously.35) Daniel et al.13 also considered the
implications of non-collapsibility of the hazard ratio. They considered a marginal hazard ratio that had
been additionally marginalised over time, as well as the covariates and baseline hazard, to provide a
single non-time-varying marginal hazard ratio, and proposed an approach to obtain such a hazard ratio
from an adjusted model. Daniel et al. note that such marginal hazard ratios (and thus any marginal
rankings based on them) are further dependent on the length of study follow-up and observed censoring
pattern, as well as the shape of the baseline hazard, and distributions of baseline risk and prognostic
and effect modifying covariates.
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For cost-effectiveness decisions, when effect modification or other sources of patient heterogeneity
are present, the net benefit should be averaged over the population.30 This requires the production
of individual- or subgroup-specific event probabilities; in the context of population-adjusted indirect
comparisons or evidence syntheses of multiple studies, at present this is only possible using ML-
NMR.5 Discrete event simulation31,32 is one suitable approach to constructing a net benefit function
and averaging this over a population, however it is not widely used due to complexity. Markov models
and decision trees are much more prevalent, however these approaches do not typically account for
patient heterogeneity. Determining the possible extent of differences in the results between approaches,
and when they might be used interchangeably, is an interesting area for further research. Regardless of
the type of economic model used, or indeed whether there is effect modification at all, the relevant
effectiveness inputs must be produced appropriately. MAIC and STC cannot produce estimates of
individual event probabilities, and are limited to producing average event probabilities in the aggregate
study population of an indirect comparison. The population-average marginal treatment effects that
these methods estimate are specific to the distribution of baseline risk (as well as all covariates)
in the aggregate study population, and cannot be applied to a different baseline risk distribution in
a target population even if the covariates are similar. At present, ML-NMR is the only population
adjustment method that can produce individual or average event probabilities, and can do so in any
target population of interest.5,28

For decisions based purely on effectiveness, when effect modification is present we propose that
decision-makers look at both the population-average conditional and marginal estimates and their
respective treatment rankings to assess whether these are in conflict (Section 7). If the rankings
agree, then there is no substantial conflict and a single treatment decision may be justified for the
entire population. However, if the rankings are in conflict then a single treatment decision cannot
satisfy both decision questions for the entire population, and decision-makers may wish to consider
splitting decisions into subgroups. This proposal necessitates using an analysis method that can produce
both conditional and marginal estimates. For analyses of single trials, this is possible using standard
regression adjustment, followed by the marginalisation approach of Zhang39 (for binary outcomes) or
Daniel et al.13 (for time-to-event outcomes). For population-adjusted indirect comparisons or evidence
syntheses of multiple studies, current implementations of MAIC and STC cannot produce estimates
of both estimands, and moreover cannot typically produce estimates for a chosen decision target
population. ML-NMR can produce estimates of both the conditional and marginal estimands in any
target population of interest, as well as the necessary quantities for cost-effectiveness models such as
average event probabilities or subgroup/individual event probabilities, making this a powerful tool for
analysts and decision-makers.5,28
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Appendix

A. Definitions of estimands in terms of potential outcomes

We can define each of the estimands given in Section 2 using the potential outcomes framework.40 Let
𝑌 (𝑘) denote potential outcomes for individuals receiving treatment k, and let 𝑔(·) be a suitable link
function such as the logit link function.

The individual-level conditional treatment effects (3) for an individual with covariates 𝒙 receiving
treatment b compared to a are defined as

𝛾𝑎𝑏 (𝒙) = 𝑔(E(𝑌 (𝑏) | 𝒙)) − 𝑔(E(𝑌 (𝑎) | 𝒙)) (A1)

where the expectations are over the distribution of potential outcomes for an individual conditional on
the covariates.

The population-average conditional treatment effects (4) for treatment b compared to a in population
P are defined as

𝑑𝑎𝑏 (𝑃) = E(𝑃) (𝑔(E(𝑌 (𝑏) | 𝒙))) − E(𝑃) (𝑔(E(𝑌 (𝑎) | 𝒙))) (A2)

where the inner expectations are over the distribution of potential outcomes for an individual
conditional on the covariates, and the outer expectations are over the population P. In other words, this
is the expectation of the individual-level conditional treatment effects over the population, 𝑑𝑎𝑏 (𝑃) =
E(𝑃) (𝛾𝑎𝑏 (𝒙)).

The population-average marginal treatment effects (6) for treatment b compared to a in population
P are defined as

Δ𝑎𝑏 (𝑃) = 𝑔
(
E(𝑃) (𝑌 (𝑏))

)
− 𝑔

(
E(𝑃) (𝑌 (𝑎))

)
(A3)

where the expectations are over the distribution of potential outcomes in the population P.
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B. Proof that effect modification is necessary for rank-switching

We prove here that rank-switching between the population-average conditional and marginal effects
can only occur in the presence of effect modification, between treatments that have different interaction
terms (i.e., no shared effect modifier assumption), and when this causes treatment ranks to change
across individuals/subgroups in the population. We shall consider the population-average conditional
and marginal estimands 𝑑𝑎𝑏 (𝑃) and Δ𝑎𝑏 (𝑃) for any two treatments a and b, and consider without loss
of generality that we have 𝑑𝑎𝑏 (𝑃) > 0.

Firstly, let us show that when there is no effect modification between treatments a and b, there can
be no rank switching between the population-average conditional and marginal estimands for these
two treatments (i.e., 𝑑𝑎𝑏 (𝑃) and Δ𝑎𝑏 (𝑃) must have the same sign). Let 𝜷2,𝑏 − 𝜷2,𝑎 = 0 so that there
is no effect modification between these two treatments. (Either there is no effect modification at all
so 𝜷2,𝑏 = 𝜷2,𝑎 = 0, or the shared effect modifier assumption is made for these two treatments so
𝜷2,𝑏 = 𝜷2,𝑎.) In this case, we have that

𝑑𝑎𝑏 (𝑃) = 𝛾𝑏 − 𝛾𝑎 (B.1)

following the definition of 𝑑𝑎𝑏 (𝑃) in equation (4). We have 𝑑𝑎𝑏 (𝑃) > 0, so therefore

𝛾𝑏 > 𝛾𝑎 . (B.2)

Since 𝑔(·) is monotonically increasing by definition as a link function, and following the definition of
the individual event probabilities in equation (5), this means that

𝜋𝑏 (𝒙) > 𝜋𝑎 (𝒙) for all 𝒙, (B.3)

and therefore

�̄�𝑏 > �̄�𝑎 (B.4)

following the definition of the average event probabilities in equation (7). From the definition of Δ𝑎𝑏 (𝑃)

in (6), and again since 𝑔(·) is monotonically increasing, this means that

Δ𝑎𝑏 (𝑃) > 0. (B.5)

Therefore, if there is no effect modification then 𝑑𝑎𝑏 (𝑃) and Δ𝑎𝑏 (𝑃) cannot be in conflict; they
must have the same sign and the corresponding treatment ranks must be in agreement for these two
treatments. A similar argument extends this fact to the case where 𝜷2,𝑏 − 𝜷2,𝑎 is non-zero but 𝒙 is
constant within the population, so that there is no substantive effect modification within the population.

Secondly, let us show that effect modification is necessary for the two estimands 𝑑𝑎𝑏 (𝑃) and Δ𝑎𝑏 (𝑃)

to be in conflict (i.e., to have opposite signs), and that this effect modification must cause the individual-
level treatment effects to change ranks across individuals/subgroups within the population for the
conflict to occur. Consider still that 𝑑𝑎𝑏 (𝑃) > 0, but now that Δ𝑎𝑏 (𝑃) < 0. From the fact that 𝑔(·)
is monotonically increasing, Δ𝑎𝑏 (𝑃) < 0 means that

�̄�𝑏 < �̄�𝑎 (B.6)

following definition (7). Therefore, there must be some values of 𝒙 within the population, say the set
𝔛∗, where

𝜋𝑏 (𝒙) < 𝜋𝑎 (𝒙) for 𝒙 in 𝔛∗, (B.7)
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and therefore where

𝛾𝑎𝑏 (𝒙) = 𝜂𝑏 (𝒙) − 𝜂𝑎 (𝒙) = 𝑔(𝜋𝑏 (𝒙)) − 𝑔(𝜋𝑎 (𝒙)) < 0 for 𝒙 in 𝔛∗, (B.8)

again using the fact that 𝑔(·) is monotonically increasing. We also must have that the set 𝔛∗ does not
constitute the entire population, because if this was the case then equation (B.8) implies that 𝛾𝑎𝑏 (�̄�) =
𝑑𝑎𝑏 (𝑃) < 0 (whereas we have assumed the contrary). Together we have 𝛾𝑎𝑏 (𝒙) < 0 for 𝒙 in 𝔛∗

and 𝛾𝑎𝑏 (𝒙) ≥ 0 for 𝒙 not in 𝔛∗, in other words the individual treatment ranks change for different
individuals/subgroups in the population, and this necessarily means that 𝛾𝑎𝑏 (𝒙) is not constant. By
definition (equation (3)), this requires that 𝜷2,𝑏 − 𝜷2,𝑎 is non-zero, and that 𝒙 is not constant in the
population; that is, there is substantive effect modification between the two treatments in the population.

We have therefore shown that effect modification is a necessary condition for rank-switching
between the population-average conditional and marginal effects to occur, and moreover the effect
modification must give rise to different treatment rankings for different individuals/subgroups in the
population if the rank-switching is to occur.
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