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Abstract

Let K be any field of characteristic two and let U1 and W1 be the Lie algebras of the
derivations of the algebra of Laurent polynomials K[t, t−1] and of the polynomial ring K[t],
respectively. The algebras U1 and W1 are equipped with natural Z-gradings. In this paper,
we provide bases for the graded identities of U1 and W1, and we prove that they do not admit
any finite basis.

2020 Mathematics Subject Classification: 16R10 (Primary); 17B01, 17B65,
17B66, 17B70 (Secondary)

1. Introduction

The description of the polynomial identities satisfied by an algebra depends heavily on
the base field. If the field is of characteristic 0, one may consider multilinear polynomial
identities since they determine all identities of a given algebra. One of the main tools in
this case is the representation theory of the symmetric and of the general linear groups,
and refinements, for a detailed account see the monographs [7, 10]. When the field K is
infinite, one has to consider multihomogeneous identities, see for example [7, section 4·2].
The methods one uses in this case are mostly based on Invariant theory [6]. Finally, if K is a
finite field then neither of the above types of identities is sufficient. As a rule, neither of the
methods described works properly. Instead one uses structure theory [17, 20, 22], together
with combinatorics based on the properties of finite fields [24].
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50 FIDELIS AND KOSHLUKOV

In spite of the extensive research in this area, little is known about the concrete form of
the identities satisfied by a given algebra. The monographs [7, 10], and their references,
give a good account on the results already obtained. But it should be stressed that the list of
algebras whose identities are known is very short and easy to reproduce. In the associative
case one knows the identities of the matrix algebras M2(K) for infinite fields of characteristic
different from 2 (see for example [16, 26]). The identities of the Grassmann algebra E are
also known, see for example [7, section 5·1], as well as those of its tensor square E ⊗ E
[25]. Add here the upper triangular matrices of any order n, UTn(K), and that is it. In the
case of Lie algebras one knows the identities of UTn(K) (as a Lie algebra), and also of
sl2(K) over infinite fields [26, 27]. We only mention that even the identities of M3(K), over
a field of characteristic 0, are not known. A “nagging” and long-standing problem is to
determine whether the identities of M2(K) admit a finite basis whenever K is an infinite
field of characteristic 2. It was proved by Kruse and by Lvov, [20, 22] that if R is a finite
associative ring then its identities admit a finite basis. Bahturin and Olshansky [3] showed
that any finite dimensional Lie algebra over a finite field has a finite basis of identities.

The theory developed by A. Kemer in the eighties [15] led him to the positive solution of
the famous Specht problem: is every ideal of identities of an associative algebra in character-
istic 0 finitely generated as an ideal of identities? Kemer’s results are far from constructive
and do not provide concrete bases of the identities of a given algebra.

We have outlined above some of the reasons that led researchers to look for other types
of polynomial identities. These include identities with involution, weak identities, group
graded identities. We shall not comment on the former two types of identities as we work
exclusively with the latter type. Graded identities appeared in Kemer’s research; his methods
rely heavily on associative superalgebras (that is Z2-graded algebras). Later on gradings on
algebras and their graded identities became an important part of PI theory. The gradings on
matrix algebras were described in [4], see also [5], assuming the base field is algebraically
closed.

The matrix algebra Mn(K) admits natural gradings by the groups Zn and Z. The corre-
sponding graded identities were described in [28, 29] in characteristic 0, and in [1, 2] in
positive characteristic. An extensive research on gradings and graded identities for classes
of important algebras has been conducted, we direct the interested reader to [18] for further
information and references.

The simple finite dimensional Lie algebras over an algebraically closed field of charac-
teristic 0 are well known. In the infinite dimensional case the so-called algebras of Cartan
type appear. We denote by W1 the Lie algebra of derivations of the polynomial ring in one
variable K[t], and by U1 the algebra of derivations of the Laurent polynomials K[t, t−1].
The former is known as the Witt algebra, the latter gives rise to the Virasoro algebra. Both
algebras have canonical gradings by the group Z such that every non-zero component is
one dimensional. The algebras W1 and U1 appear naturally in various branches of Physics
and Mathematics, the interested reader can consult the paper [11] and its references for an
extensive treatment of this topic.

The n-variable analogues of W1 and U1, the algebras Wn and Un are defined as the deriva-
tions of the corresponding polynomial and Laurent polynomial rings in n variables. These
were first studied around 1910 by E. Cartan in his classification of simple Lie algebras in
characteristic 0. Later on it was discovered that these algebras, although not simple in posi-
tive characteristic, produce naturally various simple finite dimensional Lie algebras as their
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homomorphic images. The celebrated theorems of V. Kac [12, 13] classify the simple Lie
algebras graded by Z under some natural conditions. Namely the algebra L = ⊕i∈ZLi must
be of polynomial growth:

∑
j≤i dim Lj grows like a polynomial in i; L0 acts irreducibly on

L−1, and L is generated by degrees 0 and ±1. O. Mathieu [23] classified the simple Z-
graded Lie algebras of polynomial growth. The algebras Wn and Un were also studied by
Kaplansky [14].

The graded identities for the algebra W1 were described in [9], assuming that the field is
of characteristic 0. The ones for U1, with its canonical grading by the group Z were recently
obtained in [8], over an infinite field of characteristic different from two. As a consequence,
the main result of [9] was generalised.

In this paper we study the graded identities satisfied by the Lie algebra U1, equipped
with its natural Z-grading, over an arbitrary field of characteristic two. We produce a basis
of the graded identities for U1. As a consequence we obtain a basis of those for W1 as
well. Furthermore, we prove that the graded identities of U1, as well as these of W1, do not
admit any finite basis. The counterparts of these results over an infinite field of characteristic
different from two, were obtained in [8, 9].

The ordinary identities of W1 coincide with the identities of the Lie algebra of the vector
fields on the line if K =R is the real field. The standard Lie polynomial of order 4 (which
is of degree 5 and is alternating in 4 of its variables) is an identity of W1. On the other
hand, it is a long-standing open problem to determine a basis of the identities satisfied by
W1. The vector space of Wn, the derivations of the polynomial ring in n variables, can be
given the structure of a left-symmetric algebra, denoted by Ln. In [19] the authors studied
the right-operator identities of Ln, and described a large class of general identities for Ln.
We hope that our results about the Z-graded identities of U1 may shed additional light on
the polynomial identities satisfied by W1, and consequently by U1.

2. Definitions and preliminary results

We fix a field K, all algebras and vector spaces we consider will be over K. If A is an
associative algebra one defines on the vector space of A the Lie bracket [a, b] = ab − ba.
Denote by A(−) the Lie algebra thus obtained, the Poincaré–Birkhoff–Witt theorem yields
that every Lie algebra is a subalgebra of some A(−).

Let L be an algebra (not necessarily associative) and let G be a group. A G-grading on L
is a vector space decomposition

� : L = ⊕g∈GLg (2·1)

such that LgLh ⊆ Lgh, for all g, h ∈ G. In this case one says that L is G-graded. The sub-
spaces Lg are the homogeneous components of the grading and a non-zero element a
of L is homogeneous if a ∈ Lg for some g ∈ G; we denote this by ‖a‖G = g (or simply
‖a‖ = g when the group G is clear from the context). The support of the grading is the set
supp L = {g ∈ G | Lg 	= 0}. A subalgebra (an ideal, a subspace) B of A is a graded subalgebra
(respectively ideal, subspace) if B = ⊕g∈G(Ag ∩ B).

The first example is the Witt algebra W1 = Der(K[t]). It is the Lie algebras of the deriva-
tions of the polynomial ring K[t]. The elements en = tn+1d/dt, n ≥ −1, form a basis of W1.
The Lie algebra structure on the vector space W1 is given by the multiplication

[ei, ej] = (j − i)ei+j. (2·2)
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When dealing with a field of positive characteristic p, we take the differences (j − i)
modulo p.

The algebra W1 has a Z-grading, W1 = ⊕i∈ZLi, where Li = 0 whenever i ≤ −2, and Li

is the (one-dimensional) span of ei if i ≥ −1. Thus the element en is homogeneous of
degree n.

Another example of graded algebras is the algebra U1. Let A = K[t, t−1] be the algebra
of Laurent polynomials in one variable t. Then U1 is the Lie algebras of the derivations of
A. The elements en = tn+1d/dt, n ∈Z, form a basis of U1; the multiplication in U1 is also
given by (2·2). The algebra U1 is Z-graded, U1 = ⊕

i∈Z Li where Li is the span of ei, for
each i ∈Z. This means that U1 has full support on Z, in other words supp U1 =Z.

Since we shall work with the above two graded algebras we will refrain from giving other
examples.

Let X = ∪i∈ZXi be the disjoint union of infinite countable sets of variables Xi =
{xi

1, xi
2, . . .}, i ∈Z. Assuming that for each i ∈Z the elements of the set Xi are of Z-degree i,

the free associative algebra K〈XZ〉 has a natural Z-grading ⊕i∈ZK〈XZ〉i. Here K〈XZ〉i is the
vector subspace of K〈XZ〉 spanned by all monomials of Z-degree i. The subalgebra L〈XZ〉 of
K〈XZ〉(−) generated by the set XZ is the free Z-graded Lie algebra, freely generated by XZ.
Note that L〈XZ〉 is a graded subspace of K〈XZ〉 and that the corresponding decomposition
gives a Z-grading on L〈XZ〉. The elements of L〈XZ〉 are called Z-graded polynomials (or
simply polynomials). The degree of a polynomial f in xai

i , denoted by degx
ai
i

f is defined in
the usual way. The definitions of multilinear and multihomogeneous polynomials are the nat-
ural ones. We define the (left-normed) commutator [l1, . . . , ln] of n ≥ 2 elements l1, . . . , ln
in a Lie algebra L inductively, [l1, . . . , ln] = [[l1, . . . , ln−1], ln] for n > 2.

Let L = ⊕i∈ZLi be a Lie algebra with a Z-grading. An admissible substitution for the
polynomial f (xa1

1 , . . . , xan
n ) in L is an n-tuple (l1, . . . , ln) ∈ L × · · · × L such that li ∈ Lai , for

i = 1,. . ., n. If f (l1, . . . , ln) = 0 for every admissible substitution (l1, . . . , ln) we say that
f (xa1

1 , . . . , xan
n ) is a graded identity for L. The set of Z-graded polynomial identities of L will

be denoted by TZ(L). It is a TZ-ideal, that is an ideal invariant under the endomorphisms
of L〈XZ〉 as a graded algebra. The intersection of a family of TZ-ideals in L〈XZ〉 is a TZ-
ideal; given a set of polynomials S ⊆ L〈XZ〉 we denote by 〈S〉Z the intersection of the TZ-
ideals of L〈XZ〉 that contain S. We call 〈S〉Z the TZ-ideal generated by S, and refer to S
as a basis of this TZ-ideal. It is well known that in characteristic 0, every TZ-ideal TZ(L)
is generated by its multilinear polynomials. Over an infinite field of positive characteristic
one has to take into account the multihomogeneous polynomials instead of the multilinear
ones.

In this paper, unless otherwise stated, K denotes a field of characteristic two. We do
not require any further restrictions on K. Our main result is the following theorem which
provides a basis of the Z-graded identities for U1.

THEOREM 2·1. Let K be a field of characteristic two. The ideal of the graded identities
of U1 is generated, as a TZ-ideal, by the polynomials

[xa
1, xb

2] ≡ 0, (2·3)

where a and b are integers of the same parity, that is a ≡ b (mod 2).

We deduce, for the graded identities of W1, the following theorem.
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THEOREM 2·2. Let K be a field of characteristic two. The Z-graded identities

xc ≡ 0 (c ≤ −2), [xa
1, xb

2] ≡ 0,

where a and b are integers greater than −2, and of the same parity, form a basis for the
Z-graded identities of the Lie algebra W1 over K.

3. Z-Graded identities of U1

Here we prove Theorem 2·1. To this end, we need a series of results.

LEMMA 3·1. Over a field of characteristic two, the graded identities (2·3) hold for U1.

Proof. The proof is immediate by the multiplication rules (2·2).

In analogy with the associative case we will call monomials the commutators in the free
graded Lie algebra. We recall that a basis for the free Lie algebra L〈XG〉 consists of left-
normed monomials, see for more details [21]. Additionally, the Lie algebras U1 and W1

are metabelian in characteristic 2 (they are not metabelian otherwise). Thus, without loss of
generality, we will consider all monomials to be left-normed.

PROPOSITION 3·2. Over a field of characteristic two, every graded monomial identity of
U1 is consequence of the identities (2·3).

Proof. We denote by I the TG-ideal generated by the polynomials (2·3). We prove the
claim by induction on the length n of the monomial. The result is obvious for n = 2, so
we suppose n ≥ 3. Let M′ = [xa1

1 , . . . , xan−1
n−1 ]. If M′ ∈ TZ(U1) then it lies in I, by the induc-

tion hypothesis, and hence M ∈ I. We assume now that M′ /∈ TZ(U1). Let a = ‖M′‖, then
the result of every admissible substitution in M′ is a scalar multiple of ea. Therefore,
M ∈ TZ(U1) if and only if [xa

1, xan
2 ] ∈ TZ(U1). The commutator [xa

1, xan
2 ] lies in TZ(U1) if

and only if a and an have the same parity, and hence M lies in I. Thus in all cases M ∈ I, as
required.

It is well known that every TZ-ideal is generated by its regular polynomials. Recall that a
polynomial f ∈ L〈XZ〉 is regular if every one of its variables appears in every monomial of f ,
not necessarily with the same degree.

Recall that I is the TZ-ideal generated by the polynomials in (2·3). The next lemma is a
key step in the proof of our main theorem.

LEMMA 3·3. Let M = [xa0
i0

, xa1
i1

, . . . , xan
in

] be a monomial in L〈XZ〉. If M /∈ TZ(U1) then M,
modulo I, can be written in such a way that a0 is odd, ai is even for each i = 1,. . ., n, and
a1 ≤ a2 ≤ · · · ≤ an.

Proof. Since M /∈ TZ(U1) either a0 or a1 is an odd integer. Suppose there exist i and j, with
0 ≤ i < j ≤ n, such that ai and aj are odd integers. By exchanging the first two variables, if
necessary, we can assume that i = 0 and j = n, and all other ak are even integers. (If some
additional ak is odd we simply consider the initial part of the commutator, from a0 to ak.)
Then M′ = [xa0

i0
, xa1

i1
, . . . , xan−1

in−1
] is a monomial in L〈XZ〉 that is not a graded identity. This

implies
∑n−1

i=0 ai is odd, that is M ∈ TZ(U1) which is absurd. Now we apply identity (2·3),
together with the Jacobi identity, several times on the variables of even Z-degree.
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As mentioned earlier, we cannot claim in general that a TZ-ideal is generated by its mul-
tihomogeneous elements; this is certainly true if the base field is infinite. But, in our specific
case, we are in a position to deduce this fact.

LEMMA 3·4. Over a field of characteristic two, the TZ-ideal TZ(U1) is generated by its
multihomogeneous polynomials.

Proof. The result is well known if K is infinite. So we assume K is a finite field. Let
f = f (x0, x1, . . . , xn) be a regular polynomial in TZ(U1). By Lemma 3·3, only one of the
variables in f is in an odd component. Suppose x0 in an odd component and the remaining
variables are in even components. Moreover, f is linear in x0, and x0 appears in the first
position on each monomial in f . We induct on the degree of the polynomial f . Suppose
that f is not multihomogeneous. As f is regular, we write f = ∑

i αiMi where Mi is the
commutator

[x0, x1, . . . , x1, x2, . . . , xk−1, xk, . . . , xk︸ ︷︷ ︸
mk

i times

, xk+1, . . . , xn] = x0(ad x1)m1
i . . . (ad xn)mn

i .

Here mk
i are non-negative integers depending on the variable xi and on the monomial Mi,

and ad x is, as usual, the linear transformation y ad x �→ [y, x] in a Lie algebra. For each
variable xk we put rk = min{mk

i }. By the regularity of f we have rk > 0. Applying identity
(2·3), if needed, there exists an element f ′ which is a sum of regular polynomials: f ′ =
f ′(x0, x1, . . . , xn) in TZ(U1), not necessarily having the same variables as f , such that

f ≡ f ′(ad x1)r1(ad x2)r2 · · · (ad xn)rn (mod I).

Note that the degree of the polynomial f ′ is lower than the degree of f . Since I ⊆ TZ(U1),
by induction the result follows if f ′ ∈ TZ(U1). Suppose that f ′ /∈ TZ(U1). Then there exists
an admissible substitution for the polynomial f , say (l0, l1, . . . , ln), of elements in U1 such
that f ′(l0, l1, . . . , ln) 	= 0, but f (l0, l1, . . . , ln) = 0. Recall that U1 = ⊕i∈ZLi is the natural Z-
grading on U1. Define A0 as the sum of all even components Li, i ≡ 0 (mod 2), and A1 as
the sum of the odd ones. Of course, f ′(l0, l1, . . . , ln) ∈ A1, that is

f ′(l0, l1, . . . , ln) =
∑

i∈Z
λie2i+1,

where the set {i | λi 	= 0} is finite. As each homogeneous component of U1 is one-
dimensional, we have

0 = f (l0, l1, . . . , ln) = f ′(l0, l1, . . . , ln)(ad ea1)r1 · · · (ad ean)rn =
∑

i∈Z
αiλie(2i+1)+t.

Here t = ∑n
j=1 rjaj. It is clear that each αi equals 1, this implies that each λi = 0, which

contradicts the fact that the substitution in f ′ is not zero. Therefore the graded identity f is
equivalent to a multihomogeneous graded identity.

The corollary to the above lemma is not needed in the proof of the main theorem. If K
is an infinite field of characteristic different from 2, it was obtained in [8, theorem 4·4]. We
mention here that the proof given there is essentially characteristic-free, and also works when
K is a finite field. We decided to include it here since, as a rule, the multilinear identities do
not determine the ideals of identities if the base field is of positive characteristic.
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COROLLARY 3·5. Let K be a field of characteristic two. The TZ-ideal TZ(U1) is
generated by its multilinear polynomials.

Proof. By Lemma 3·4, we can consider the multihomogeneous graded identities. Let f =
f (xa1

1 , . . . , xar
r ) be a multihomogeneous graded identity of U1. As dimK Li ≤ 1 for every i ∈

Z, we have that each admissible substitution ϕ can be taken to map xai
i to ξieai where ξ ’s are

commutative and associative (independent) variables over K. Here, as above, eai spans the
vector space Lai . Hence we have

ϕ(f (xa1
1 , . . . , xar

r )) = ξ
n1
1 · · · ξnr

r f (ea1 , . . . , ear ). (3·1)

Fix some ai, degx
ai
i

f = ni ≥ 1. Take new variables xai
i,j where 1 ≤ j ≤ ni, and consider a mul-

tihomogeneous graded polynomial h(xa1
1,1, . . . , xa1

1,n1
, xa2

2,1, . . . , xar
r,nr

) such that (here we put,
in order to simplify the notation, i = 1)

h( xa1
1 , . . . , xa1

1︸ ︷︷ ︸
n1

, xa2
2 , . . . , xar

r ) = f (xa1
1 , . . . , xar

r ).

But xai
i,j can be evaluated to eai for each 1 ≤ i ≤ r and 1 ≤ j ≤ ni. Then equation. (3·1) implies

that h is a graded identity and that f is a consequence of h. Moreover h is linear in each of the
new ni variables. Continuing in this way for the remaining variables we prove the statement.

Remark 3·6. The choice of the polynomial h in the above theorem need not be given
by the multilinearisation process. Due to this reason it need not be unique. For exam-
ple f = [xg

1, xh
2, xg

1] can come from g = [xg
1, xh

2, xg
3]. The complete linearisation of f is

[xg
1, xh

2, xg
3] + [xg

3, xh
2, xg

1]. Clearly in characteristic 2 we cannot return to f starting with the
latter polynomial.

Now we have all the ingredients for the proof of the main result in the paper.

Proof of Theorem 2·1. As done in the proof of Lemma 3·4, every multihomogeneous
polynomial f , modulo I, is equivalent, up to a scalar factor, to the monomial

[x0, x1, . . . , x1, x2, . . . , xk−1, xk, . . . , xk︸ ︷︷ ︸
mk

i times

, xk+1, . . . , xn] = x0(ad x1)m1
i · · · (ad xn)mn

i ,

where x1,. . ., xn are of even degree. Hence f ∈ TZ(U1) if and only if f ∈ I. This implies
Theorem 2·1.

The above results are easily adaptable to the case of the Lie algebra W1. Recall that in
[9] the authors considered the base field of characteristic 0, and this was important in their
proofs. In [8], the result was extended to W1 considered over an infinite field of characteristic
different from 2.

4. Independence of graded identities

In this section we use ideas from [8, 9]. As above K is an arbitrary field of characteristic
two.

Denote by fr,s = [xr
1, xs

2] ∈ L〈XZ〉 the graded polynomials from (2·3), and assume r ≤ s.
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LEMMA 4·1. Suppose r and s are integers of the same parity, r ≡ s (mod 2). The graded
identity fr,s is not a consequence of the identities fu,v, u ≤ v, if (r, s) 	= (u, v).

Proof. Let r, s ∈Z be of the same parity, and let H = UT(3, K) be the Lie algebra of
strictly upper triangular 3 × 3 matrices over K. Define the vector subspaces Hk, k ∈Z, in H
as follows:

(i) if r 	= s we set Hk = 0 for all k 	= r, s and r + s; Hr is the span of E12, Hs is the span
of E23 and Hr+s is the span of E13;

(ii) if r = s = 0 then H0 = H, and Hk = 0 for every k 	= 0;

(iii) if r = s 	= 0 then Hr is spanned by E12 and E23, H2r is spanned by E13, and Hk = 0 for
every k 	= r, 2r.

Here Eij is the matrix that has 1 at position (i, j) and 0 elsewhere. It is clear that H = ⊕i∈ZHi

is a Z-graded Lie algebra. Since [E12, E23] = E13 	= 0, the graded identity [xr
1, xs

2] is not
satisfied in H. On the other hand, one can easily see that H satisfies all graded identities
(2·3) as well as all identities fu,v when (r, s) 	= (u, v). The result follows.

A set I of (graded) polynomials is an independent set of (graded) identities if neither of
them lies in the ideal of (graded) identities generated by the remaining ones.

COROLLARY 4·2. The set of polynomials {fr,s | r, s ∈Z, r ≤ s, r ≡ s (mod 2)} is an inde-
pendent set of graded identities in L〈XZ〉.

The above statements, together with Theorem 2·1, yield the following theorem.

THEOREM 4·3. Over a field of characteristic two, the graded identities

[xa
1, xb

2] ≡ 0, a ≤ b,

where a and b are of the same parity, form a minimal basis for the Z-graded identities
of U1.

For the Lie algebra W1, we add to the list of identities the variables xc with c < −1. Note
that the identity f−1,−1 = [x−1

1 , x−1
2 ] is a consequence of x−2.

LEMMA 4·4. For each d ∈Z, the graded identity xd is not a consequence of the graded
identities (2·3) and all identities xc where c 	= d.

Proof. Let d ∈Z and let H be the 1-dimensional Lie algebra over K. The algebra H =
⊕iZHi is Z-graded with ith homogeneous component Hi equal to H if i = d and 0 otherwise.
It is clear that H satisfies the graded identities (2·3) as well as all graded identities xc where
c 	= d but does not satisfy the identity xd.

COROLLARY 4·5. The set of polynomials {xd | d ≤ −2} is an independent set of graded
identities in L〈XZ〉.

THEOREM 4·6. The graded identities xc (c ≤ −2) and [xa
1, xb

2], where a and b are of the
same parity, with 0 ≤ a ≤ b, form a minimal basis for the Z-graded identities of W1 over a
field K of characteristic 2.
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The next corollary is a direct consequence of the above theorem together with
Theorem 4·3.

COROLLARY 4·7. Over a field of characteristic two, the Z-graded identities for the Lie
algebra U1, as well as W1, do not admit any finite bases.
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REFERENCES

[1] S. S. AZEVEDO. Graded identities for the matrix algebra of order n over an infinite field. Commun.
Algebra (12) 30 (2002), 5849–5860.

[2] S. S. AZEVEDO. A basis for Z-graded identities of matrices over infinite fields. Serdica Math. J. 29
(2003), 149–158.

[3] JU. A. BAHTURIN and A. J. OL’SHANSKY. Identical relations in finite Lie rings. Math. USSR
Sb. (4) 96 (138) (1975), 543–559. (Russian; English translation: Mathematics of the USSR-Sbornik,
25: 507-523.)

[4] Y. BAHTURIN, S. SEHGAL and M. ZAICEV. Group gradings on associative algebras. J. Algebra
241 (2001), 677–698.

[5] Y. BAHTURIN and M. ZAICEV. Graded algebras and graded identities. Polynomial identities and
combinatorial methods (Pantelleria, 2001). Lecture Notes in Pure and Appl. Math. vol. 235 (Dekker,
New York, 2003), pp. 101–139.

[6] C. DE CONCINI and C. PROCESI. A characteristic free approach to invariant theory. Adv. Math.
21 (1976), 330–354.

[7] V. DRENSKY. Free algebras and PI algebras. Graduate course in Algebra (Springer-Verlag,
Singapore 2000).

[8] C. FIDELIS and P. KOSHLUKOV. Z-graded identities of the Lie algebras U1, submitted. arXiv
preprint, arXiv:2107.10903v1 (2021).

[9] J. A. FREITAS, P. KOSHLUKOV and A. KRASILNIKOV. Z-graded identities of the Lie algebra
W1. J. Algebra 427 (2015), 226–251.

[10] A. GIAMBRUNO and M. ZAICEV. Polynomial identities and asymptotic methods. AMS Math.
Surveys Monogr. vol. 122 (Providence, R.I., 2005).

[11] Q. HUANG and R. ZHDANOV. Realizations of the Witt and Virasoro algebras and integrable
equations. J. Nonlinear Math. Phys. (1) 27 (2020), 36–56.

[12] V. KAC. Simple irreducible graded Lie algebras of finite growth. Izv. Akad. Nauk USSR, Ser. Mat. 32
(l968), 1923–1967. Transl. Math. USSR Izv. 2 (l968), 1271–1311.

[13] V. KAC. Infinite-Dimensional Lie Algebras. 3rd ed. (Cambridge University Press, 1994).
[14] I. KAPLANSKY. The Virasoro algebra. Commun. Math. Phys. (1) 86 (1982), 49–54.
[15] A. R. KEMER. Ideals of identities of associative algebras. Trans. Math. Monogr. vol. 87. (Amer.

Math. Soc., Providence, RI, 1991).
[16] P. KOSHLUKOV. Basis of the identities of the matrix algebra of order two over a field of

characteristic p 	= 2. J. Algebra 241 (2001), 410–434.
[17] P. KOSHLUKOV and S. AZEVEDO. A basis for the graded identities of the matrix algebra of order

two over a finite field of characteristic p 	= 2. Finite Fields Appl. (4) 8 (2002), 597–609.
[18] P. KOSHLUKOV and F. YUKIHIDE. Group gradings on the Lie algebra of upper triangular

matrices. J. Algebra 477 (2017), 294–311.
[19] D. KOZYBAEV and U. UMIRBAEV. Identities of the left-symmetric Witt algebras. Internat. J.

Algebra Comput. (2) 26 (2016), 435–450.
[20] R. L. KRUSE. Identities satisfied by a finite ring. J. Algebra 26 (1973), 298–318.
[21] G.P. KUKIN. Bases of free Lie algebras. Mat. Zametki (3) 24 (1978), 375–382 (Russian). English

translation: Math. Notes 24 (1979), 700–704.
[22] I. V. LVOV. Varieties of associative rings. Algebra i Logika (3) 12 (1973), 269–297 (Russian). English

translation: Algebra Logic 12 (3) (1973), 150–167.

https://doi.org/10.1017/S0305004122000123 Published online by Cambridge University Press

https://arxiv.org/abs/http://www.arXiv:2107.10903v1
https://doi.org/10.1017/S0305004122000123


58 FIDELIS AND KOSHLUKOV

[23] O. MATHIEU. Classification of simple graded Lie algebras of finite growth. Invent. Math. (3) 108
(1992), 455–589.

[24] S. OATES and M. B. PPWELL. Identical relations in finite groups. J. Algebra 1 (1964), 11–39.
[25] A. POPOV. Identities of the tensor square of a Grassmann algebra. Algebra i Logika (4) 21 (1982),

442–471 (Russian); English translation: Algebra and Logic 21 (1982), 296–316.
[26] YU. RAZMYSLOV. Identities of algebras and their representations. Trans. Math. Monogr. vol. 138

(Amer. Math. Soc. Providence, RI, 1994).
[27] S. VASILOVSKY. The basis of identities of a three-dimensional simple Lie algebra over an infinite

field. Algebra i Logika (5) 28 (1989), 534–554 (Russian); English translation: Algebra Logic 28, No.
5 (1989), 355–368.

[28] S. YU. VASILOVSKY. Z-graded polynomial identities of the full matrix algebra. Commun. Algebra
(2) 26 (1998), 601–612.

[29] S. YU. VASILOVSKY. Zn-graded polynomial identities of the full matrix algebra of order n. Proc.
Amer. Math. Soc. (12) 127 (1999), 3517–3524.

https://doi.org/10.1017/S0305004122000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004122000123

	Introduction
	Definitions and preliminary results
	"026E30F mathbbZ-Graded identities of U_1
	Independence of graded identities

