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Turbulent flows over rough beds with macroroughness elements of low relative
submergence are characteristic of natural river systems. These flows exhibit highly
three-dimensional structures, including large-scale coherent patterns, complex nonlinear
interactions and significant drag induced by immobile boulders. In this study, large-eddy
simulations are conducted of the flow through an array of boulders on a rough bed, based
on experiments by Papanicolaou et al. (2012) Acta Geophys. 60 (6), 1502–1546. The
analysis includes the instantaneous flow dynamics, the parameterisation of hydrodynamic
roughness on the averaged velocity profile and the application of the double-averaged
methodology. These upscaling approaches reveal the combined influence of wake
turbulence and secondary currents (SCs), and provide insights into momentum and energy
conservation mechanisms, which are critical for transport processes in fluvial environ-
ments. Results indicate that the boulder array reduces total fluid stress at the rough bed
surface to 0.5ρu2∗, which can have important implications for sediment transport. Form-
induced stresses, primarily originating in the boulder wakes, reach up to 37 % of total
fluid stress, with peak values comparable to turbulent stresses at mid-boulder elevation.
Form-induced kinetic energy (DKE) is shown to have the same magnitude as the turbulent
kinetic energy (TKE), highlighting energy transfers from mean flow drag to DKE, then to
TKE, before final dissipation. This study underscores the critical role of macroroughness
in stress distribution, and the importance of the joint action of SCs and wake turbulence
in driving form-induced stresses, which partially counterbalance drag dissipation.
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1. Introduction
Turbulent flows over rough beds with macroroughness elements usually encountered
in mountain streams, such as boulders, woody debris or bed rocks are highly three-
dimensional (3-D) and influenced by the complex surface roughness and configuration.
Macroroughness elements, depending on the relative submergence (i.e. ratio between
the water depth and the characteristic length scale of the roughness), can influence the
entire water column and generate significant viscous and form drag, leading to enhanced
dissipation of turbulent kinetic energy. This has been observed in previous research
focusing on understanding the complex 3-D flow generated in the vicinity of isolated
boulders (Dey et al. 2011; Hajimirzaie et al. 2014) and periodic arrays of boulders (Yager,
Kirchner & Dietrich 2007; Papanicolaou et al. 2012; Monsalve, Yager & Schmeeckle
2017), to describe their effects on mean velocity, vorticity, turbulent kinetic energy, shear-
stress distribution and bedload sediment transport. All these investigations have been based
on experiments and only a few numerical simulations have been performed partly due to
the challenges associated with the high Reynolds numbers encountered in natural systems.
To complement the knowledge generated by previous experiments, Fang, Liu & Stoesser
(2017) and Liu et al. (2017) performed large-eddy simulations (LES) over an array of
boulders placed on a rough bed. Recently, Liu et al. (2024) extended this work to explore
the role of the free surface and the hyporheic exchange.

High-resolution numerical simulations can provide a detailed view of the dynamics
of these flows in rough surfaces, capturing the unsteady coherent structures that emerge
from the bed and from the macroroughness elements. A key aspect of this analysis is
the spatial distribution of near-bed shear stresses, which play an important role in driving
sediment fluxes and produce zones of erosion and deposition. Additionally, stresses arising
from the macroroughness elements, such as form-induced stresses and pressure drag,
are not explicitly accounted for in traditional Reynolds-averaged Navier–Stokes (RANS)
formulations, underscoring the need for more advanced approaches. Direct numerical
simulations (DNS) and LES can resolve the interactions between roughness elements and
the flow, and yield a deeper understanding on the influence of the bed on the instantaneous
transport of mass, energy and momentum. However, the practical representation of
hydrodynamic properties often relies on averaged flow fields to estimate bed stresses
and flow resistance. Typically, this involves using canonical boundary-layer profiles to
describe the velocity distribution. While logarithmic velocity profiles generally perform
well, current research is focusing on improving roughness parameterisations (Chung et al.
2021; Flack & Chung 2022), particularly in cases where bed roughness varies significantly.
Recent approaches, such as the one proposed by Meneveau, Hutchins & Chung (2024),
have been shown to enhance the representation of near-bed velocities and mean stresses
over irregular rough surfaces.

In flows over rough beds with macroroughness, turbulent statistics are expected to
exhibit considerable spatial variability, leading to a locally non-uniform flow field. This
heterogeneity arises primarily from the drag exerted by large roughness elements, further
complicating the characterisation of bed stresses and flow resistance. These challenges
highlight the need for high-resolution simulations to connect fine-scale processes with
larger-scale hydrodynamic models. The spatial and temporal statistics observed over
complex surfaces and the upscaling analysis that can help understanding the impacts of
the dynamics of turbulence at larger scales can also be rigorously achieved by the double-
averaging methodology (DAM) (Vowinckel et al. 2017). The DAM consists of spatially
averaging the RANS equations, resulting in a new set of mass and momentum conservation
equations, averaged both in time and space. This approach was first introduced by
Wilson & Shaw (1977) for the flow in vegetation canopies, and then formalised by
1014 A21-2
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Raupach & Shaw (1982). Since the work of Wilson & Shaw (1977), DAM has been
extensively used to study a variety of flows, including the flow over vegetation, urban
canopies and rough beds. In the context of rough beds, Nikora et al. (2001) extended the
approach by including the porosity function φ (i.e. ratio of the fluid volume or area to
the total averaging volume or area). The spatial averaging is then conveniently performed
over thin bed-parallel slabs with a horizontal area much larger than the scale of spatial
fluctuations induced by the roughness elements. Nikora et al. (2001) divided the flow
in different layers consisting from top to bottom of: (i) the outer and (ii) logarithmic
layers, where viscous effects and form-induced stresses are negligible, (iii) a form-induced
sublayer, where roughness elements are not present but their influence is observed through
form-induced stresses, (iv) an interfacial sublayer corresponding to the flow between crests
and troughs of the roughness elements and (v) a subsurface layer corresponding to porous
media where the flow is driven mainly by gravity. The roughness layer is then defined as
the sum of the interfacial and form-induced sublayers.

Since the work of Nikora et al. (2001), renewed effort has been made in investigating
double-averaged quantities of turbulent flows over rough beds. Previous experiments
indicate that roughness shape and configuration, together with relative submergence,
influence the turbulent and form induced stresses as well as the shape of the double-
averaged velocity profile. Peaks of turbulent shear stress at the top of roughness elements
are connected to the production of turbulent kinetic energy (TKE), whereas peaks of
form-induced stresses are usually below, in the so-called interfacial sublayer (Pokrajac
et al. 2007; Mignot, Hurther & Barthélemy 2009; Sarkar & Dey 2010; Dey & Das 2012;
Sarkar, Papanicolaou & Dey 2016). To understand the origin of form-induced stresses,
Pokrajac et al. (2007) proposed a quadrant analysis based on spatial velocity fluctuations
(ũ and w̃), in analogy to the one performed for Reynolds stresses. They also defined quad-
rant maps, which describe the spatial distribution of stresses, and evaluated the magnitude
and direction of spatial velocity fluctuations to assess the spatial coherence in the flow.

Double-averaged kinetic energy budgets have also been extensively studied over rough
beds (Mignot, Barthélemy & Hurther 2008; Yuan & Piomelli 2014; Fang et al. 2018;
Zampiron, Cameron & Nikora 2021). Energy is injected by gravity into the mean flow,
and then a fraction is transferred to the turbulent and form-induced fields. Zampiron et al.
(2021) observed form-induced kinetic energy, also known as dispersive kinetic energy
(DKE), originating from the work done by the mean flow against form-induced stresses,
and comparable in magnitude to TKE production. However, there is also a gain of DKE
coming from the mean flow that results from pressure and viscous drag, which has been
less reported in the past (Papadopoulos et al. 2020), and a considerable fraction of DKE
that is also transferred to TKE (Yuan & Piomelli 2014; Zampiron et al. 2021). Moreover,
energy dissipation occurs mostly through turbulence, however, it is not clear if dissipation
by the form-induced field may be relevant, since most of the studies on DAM only report
the TKE budget.

Most of previous investigations have focused on high relative submergence according to
the classification of Nikora et al. (2001) (type I, h � Δ, where Δ is the roughness height
and h is the water depth), where spatial variations induced by the roughness elements do
not influence the entire water column and therefore the outer and logarithmic layers are
usually present. Very few studies have been performed for low relative submergence (type
II, Δ < h < (2 − 5)Δ) and partially inundated rough bed flows (type III, h < Δ). For these
two last regimes, usually the form-induced and the interfacial sublayers are the uppermost
layers, respectively. In addition to relative submergence, macroroughness element
separation plays a key role, resulting in three different hydrodynamic regimes (Oke 1988;
Grimmond & Oke 1999). In the isolated regime the wake of one macroroughness element
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does not affect the wake downstream. The wake interference regime occurs when the
wakes of two obstacles interact, but the spacing remains large enough for wake formation
to persist. In contrast, the skimming regime emerges when the spacing is too small for
individual wakes to develop, leading to a cavity-type flow between obstacles (Powell 2014).

The DAM can be employed to upscale the small-scale flow that emerges at the level
of the roughness elements involving separation and recirculation patterns, which results
in viscous and form drag. In these flows, even the time-averaged field presents large
spatial variations. Therefore, a proper method that averages the equations over a volume
much larger than the scale of spatial fluctuations can eliminate these variations in the
flow quantities and include the effects of the grain-scale variations in the conservation
equations. Moreover, for a sufficiently large averaging volume, the double-averaged flow
is steady and uniform in the streamwise and spanwise directions and varies only along the
depth, simplifying the analysis.

To bridge the gap on the lack of knowledge about the averaged flow over a rough
bed with low relative submergence, known as type II, Δ < h < (2 − 5)Δ (Nikora et al.
2001), we study the turbulent flow over an array of boulders placed on a rough bed
using LES to analyse the small- and large-scale flow fields. The boulders are considered
as macroroughness elements that strongly influence the entire water column due to the
low relative submergence (h/D = 3.5). We provide a detailed description of the double-
averaged flow velocity, shear-stress distribution, mean kinetic energy (MKE), TKE and
DKE budgets, considering also the contribution of form-induced stresses through the
quadrant diagram and maps as proposed by Pokrajac et al. (2007). With the instantaneous
flow obtained by LES we aim to explain how the 3-D flow features generated around
the roughness elements contribute to each term in the momentum and energy balances,
especially to form-induced stresses, MKE, TKE and DKE budgets. Additionally, we
discuss on the potential effects on bedload transport over rough beds with macroroughness
elements, as we can estimate the effective shear stress acting on the bed. Consequently, part
of the global scope of this work is to evaluate form-induced stresses and the total drag that
can provide insights to improve sediment fluxes and threshold predictions.

The paper is structured as follows: § 2 describes the numerical methods and
computational details of LES. The time-averaged and instantaneous flow together with
a comparison of computed results with experimental data are presented in § 3. Then,
the double-averaged momentum and energy conservation equations for rough bed flows
are summarised in § 4. Averaged velocity and results derived from the momentum
conservation equation are presented and discussed in § 5, including shear-stress profiles as
well as quadrant maps and diagrams to clarify the contributions to form-induced stresses.
Similarly, results related to the conservation equations for kinetic energy are presented in
§ 6, in which double-averaged normal stresses, TKE and DKE profiles are compared with
MKE, TKE and DKE budgets to evaluate where production, transport and dissipation
of kinetic energy occur. Finally, a summary of the most important findings and their
implications is presented in § 7.

2. Numerical simulation
The computational domain for LES is based on the symmetric experimental configuration
of Papanicolaou et al. (2012). A small portion of the domain is considered by applying pe-
riodic boundary conditions in the streamwise (x) and spanwise (y) directions due to the pe-
riodicity of the experimental roughness configuration. The computational domain consists
of one spherical boulder at the centre and a quarter of a spherical boulder in each corner,
all of them placed on a rough bed composed of 540 hemispheres, as shown in figure 1.
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Figure 1. Computational domain for LES using periodic boundary conditions in the streamwise (x) and
spanwise (y) directions to reproduce the experimental configuration of Papanicolaou et al. (2012).

As in the experimental work, the boulders and the rough bed are assumed to be
immobile with diameters D = 5.5 cm and drb = 1.83 cm respectively. The relative
submergence RS = h/D = 3.5 (i.e. ratio between the water depth and the boulders
diameter) corresponds to the second regime (i.e. low RS) according to the classification of
Nikora et al. (2001), where the boulders significantly influence the water column without
interacting with the free surface. The diagonal boulder spacing Δd/D = 11.67 corresponds
to the isolated regime in which the wake of one boulder has a limited influence on the
boulder downstream. The Reynolds number Reh = 150 500 and Froude number Fr =
0.567 are maintained the same to replicate the hydrodynamic conditions of the experiment.
Both parameters are based on the water depth h = 0.193 m defined as the distance from
the top of the rough bed hemispheres to the water surface, and the bulk velocity Ub =
0.78 m s−1 considered as the cross-sectional mean velocity excluding volumes occupied
by the boulders and the rough bed. Since no deformation of the free surface was observed
in the experiment, a symmetry boundary condition is employed at the top boundary. Only
the rough bed configuration used in this study was changed compared with the experiment
by arranging one layer of hemispheres in a cubic pattern, as also performed in the work of
Manes et al. (2009); Fang et al. (2018) and Bomminayuni & Stoesser (2011).

The laboratory experiment used for comparison was conducted in a flume with a
rectangular cross-section and an aspect ratio of B/h ≈ 5, where B is the channel width.
While corner-induced secondary currents may arise under these conditions (Nezu &
Nakagawa 1993), their influence is expected to be limited compared with the spanwise
heterogeneity induced by the boulder array. In the simulations, sidewall effects are not
considered, and periodic boundary conditions are applied in the spanwise direction
to replicate the core region of the experimental set-up. Moreover, the streamwise and
spanwise dimensions of the computational domain are consistent with the experimental
configuration and are sufficient to resolve large-scale streamwise turbulent structures, as
demonstrated by the decay of the velocity autocorrelation functions to zero within less
than half the domain length (see Liu et al. (2017)).

The governing equations are the three-dimensional, spatially filtered unsteady,
incompressible Navier–Stokes equations. They are expressed in the Cartesian coordinates
as follows:

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ u j

∂ui

∂x j
= −∂ P

∂xi
+ ∂2ui

∂x j∂x j
− ∂τi j

∂x j
+ fi , (2.2)
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where ui are the filtered components of velocity, P = (p/ρ) − (1/3)δi jτkk , with p the
filtered pressure, ρ the fluid density, τi j are the components of the subgrid-scale (SGS)
stress tensor and fi = ( fx , 0, 0) is the driving pressure gradient to maintain a constant
discharge when applying periodic boundary conditions. The origin of the coordinate
system is placed at the bottom left.

The SGS tensor is defined as τi j = −2νt Si j with Si j = (1/2)((∂ui/∂x j ) + (∂u j/∂xi ))

the resolved-scale strain-rate tensor. The eddy viscosity is based on the dynamic model
with a local average for the constant due to the inhomogeneity of the flow in all directions
(Germano et al. 1991; Lilly 1992) and is calculated as νt = CsΔ

2|S| with |S| = √
2Skl Skl .

This average considers 27 grid points, and the test filter is applied as defined in Germano
et al. (1991).

The array of boulders and the rough bed are accounted for by the sharp immersed
boundary method (IBM) proposed by Gilmanov, Sotiropoulos & Balaras (2003) with a
discrete forcing, imposing a local direct boundary condition. For high Reynolds numbers,
using an IBM implies the challenge of coping with thin boundary layers without the
possibility of refining the grid in the wall-normal direction (Verzicco 2023). This causes
the impossibility of resolving the wall and therefore the use of an appropriate wall
modelling approach becomes critical for the accuracy of the results. Hence, the wall model
proposed in Cabot & Moin (2000) and Wang & Moin (2002) is used for the boulders and
the rough bed. This wall model is based on the following boundary-layer equation at the
IB nodes (Verzicco 2023):

1
ρ

∂

∂l

(
(μ + μt )

∂us

∂l

)
= − 1

ρ

∂p

∂s
+ ∂us

∂t
+ ∂ulus

∂s
, (2.3)

where l and s are directions normal and tangential to the wall, respectively, and μt is the
turbulent viscosity. Neglecting the right-hand side terms of (2.3), the equilibrium stress
balance model is obtained

1
ρ

∂

∂l

(
(μ + μt )

∂us

∂l

)
= 0, (2.4)

and the turbulent viscosity is given by the mixing length model with near-wall damping
written as

μt = μκl+
(

1 − e
−l+

19

)2

, (2.5)

where l+ = u∗l/ν, u∗ is the friction velocity and κ = 0.41 is the von Kármán constant.
Equation (2.4) is solved iteratively for u∗ using the Newton–Raphson method (Kang et al.
2011).

The Cartesian uniform numerical grid of 33.3 million nodes consists of 501 × 301 × 221
points in the streamwise (x), spanwise (y) and vertical (z) directions, respectively. Using
the near-bed effective shear velocity (i.e. subtracting the shear stress borne by roughness
elements as pressure and viscous drag) the grid resolution in wall units is 
x+ = 
y+ =

z+ = 45. The total friction velocity u∗ = 0.082 m s−1 is a result of the simulation and
is computed based on the pressure gradient needed to maintain a constant discharge. The
non-dimensional time step is 
t = 0.01 (0.0007 s) based on the bulk velocity and the
boulder diameter.

The filtered Navier–Stokes equations are solved using a dual time-stepping artificial
compressibility scheme, employing a second-order accurate finite-volume method on
a non-staggered computational grid. The discrete equations are advanced in time by
the pressure-based implicit preconditioner of Sotiropoulos & Constantinescu (1997),
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Figure 2. Comparison between our (black continuous line), the experimental data of Papanicolaou et al. (2012)
(red circles) and the LES of Liu et al. (2017) (black dashed line). Top - non-dimensional mean velocity. Bottom
- non-dimensional root mean square of the streamwise velocity fluctuations. The data correspond to different
locations along the centreline of the computational domain.

enhanced with local time stepping. Applications and performance of this model have been
tested and discussed in detail in a series of previous papers, in which the accuracy of the
methods has been demonstrated by comparisons with detailed available experimental data
(see Paik, Escauriaza & Sotiropoulos 2007; Escauriaza & Sotiropoulos 2011a,b; Gajardo,
Escauriaza & Ingram 2019; Gotelli et al. 2019; Sandoval et al. 2019; Barros & Escauriaza
2024 for details).

3. Time-averaged and instantaneous flow field
A brief description of the time-averaged and instantaneous flow obtained by LES,
comparing the results with the experiments of Papanicolaou et al. (2012) is presented
in this section.

3.1. Comparison with experimental data
Mean velocity and root mean square of the streamwise velocity fluctuations obtained from
the LES are compared with the experimental data of Papanicolaou et al. (2012) and the
simulation results of Liu et al. (2017) in figure 2.

The results show that LES reproduces the mean velocity profiles within the array of
boulders and particularly the wake and the average velocity gradients. A near wake is
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clearly observed downstream of the first boulder with a peak of
√

u′u′ at roughly the
boulder height. Further downstream, the flow recovers and slowly tends towards a rough
bed boundary-layer profile before reaching the next boulder. The model is able to correctly
predict the deficit in the velocity profiles occurring in the wake of the boulders, as well
as the increase in the root mean square of the streamwise velocity fluctuation around
the boulders crest. This is an indicator of the quality of the IBM method implemented
here. The friction velocity obtained here (u∗ = 0.082 m s−1) is in very good agreement
with the averaged values reported in the experiments of Papanicolaou et al. (2012) (u∗ =
0.075 m s−1) and the simulation of Liu et al. (2017) (u∗ = 0.079 m s−1), with only minor
differences likely due to variations in the rough bed configuration.

3.2. Mean flow and second-order statistics
Figure 3 presents the time-averaged velocity magnitude and streamlines in some horizontal
and vertical planes as well as some cross-sections. The four horizontal planes correspond
to elevations at one, two and three quarters of the height of the boulder (figure 3b–d)
and slightly above the rough bed (figure 3a). The two vertical planes are located at the
middle of the central boulder (figure 3e) and with a centre slightly shifted in the transverse
direction (figure 3f ). Finally, the three cross-sections are located upstream, at the centre
and downstream the central boulder respectively (figure 3g–i). The streamlines show
similar patterns of the flow past spheres on a smooth bed and a rough bed with different
packing, where separation occurs upstream at mid-boulder elevation (Papanicolaou et al.
2012; Liu et al. 2017). The flow accelerates above and around the spheres producing a low-
velocity region downstream. In the present work the rough bed significantly influences the
wake of the boulders where a loss of coherence is observed compared with a smooth
bed (Hajimirzaie et al. 2014) since a low-velocity zone with no vertical recirculation is
generated downstream of the boulders, as shown in figure 3(e). This occurs because the
flow accelerates around the boulders producing a vertically oriented flow in the wake.
Therefore, even when a recirculating region is observed in the wake of the boulders in the
horizontal planes (figure 3a–d), it is influenced by the vertical flow coming from the sides
of the boulders (figure 3e). The rough bed also deviates the streamlines compared with the
mid-boulder elevation, between the small hemispheres, which is observed in the horizontal
plane slightly above the rough bed (z − rrb)/D = 0.06 (figure 3a). The extension of the
mean low-velocity region located downstream the boulders agrees with the results reported
by Liu et al. (2017) and it is about two boulder diameters.

The cross-sections of figures 3(g)–3(i) show secondary flow induced by the boulders.
In addition, the longitudinal-averaged mean flow in the cross-section is also given
in figure 4. Secondary currents of Prandtl second type emerging from the boulders
heterogeneity in the transverse direction are observed (Nikora & Roy 2012; Anderson
et al. 2015). Counter-rotating cells with upward flow at the boulder location and downward
flow between the boulders in the transverse direction are depicted in figure 4. The size
of secondary current (SC) cells is larger than the boulder diameter and scales with the
transverse spacing between boulders as has been observed in previous studies (Zampiron,
Cameron & Nikora 2020).

The primary component of non-dimensional shear stress −u′w′ and the TKE are shown
in figure 5. The vertical plane at the middle of the central boulder is depicted where
clear maxima of −u′w′ and TKE can be observed at the top of the boulders, and a local
peak just above the rough bed can also be identified. The two horizontal planes show
the two vertical locations indicated by the dashed lines in figure 5. The horizontal plane
located at the boulders crest illustrates the high TKE magnitude together with high shear
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Figure 3. Streamlines and non-dimensional time-averaged velocity magnitude at four horizontal, two vertical
and three cross-sectional planes. The horizontal planes correspond to (z − rrb)/D = 0.06 (a), 0.25 (b), 0.5
(c) and 0.75 (d). The vertical planes include y/D = 3 (e) and 3.18 (f ). The cross-sectional planes are located
at x/D = 2 (g), 5 (h) and 7 (f ). The velocity magnitude is computed considering only the components within
the planes.

stress downstream the boulders top, which has been widely observed in previous studies
(Hajimirzaie et al. 2014; Liu et al. 2017). Maximum values found at the boulders crest
result from the shear layer produced above the spheres, separating the high-velocity flow
above the boulders and the low velocity in the downstream wake. The observed TKE
maximum mainly results from high streamwise velocity fluctuations. Conversely, in the
region between the rough bed and the top of the boulders, beneath the shear layer and
within the wake, low values of TKE and −u′w′ exist. Slightly above the rough bed and
between the boulders, spanning from at least 3.5 < y/D < 5.5 or 0.5 < y/D < 2.5 in
the transverse direction, where the streamwise velocity is high, TKE is high as well as
−u′w′. These conditions might have direct implications for bedload transport and for the
hydrodynamic stresses acting on particles at the bed. We anticipate that sediments could
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Figure 4. Cross-section distribution of mean streamwise velocity u/Ub with (v/Ub,w/Ub) vectors. To show
the overall presence of secondary currents, all velocities are averaged in the longitudinal direction. The scale
of the arrow is indicated in the figure.
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Figure 5. (a) Primary component of non-dimensional shear stress and (b) non-dimensional TKE. The vertical
plane is located at the middle of the central boulder y/D = 3 whereas the two horizontal planes correspond to
the top of the boulders (z − rrb)/D = 1 and just above the rough bed (z − rrb)/D ≈ 0 where shear stress and
TKE reach their local and global peaks (see dashed lines at the top).

deposit in low streamwise velocity and −u′w′ regions of the wake and be transported
in high streamwise velocity and −u′w′ regions between the boulders in the transverse
direction. Recently, Liu et al. (2024) found similar values of low and high −u′w′ and
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Figure 6. Longitudinal and transverse profiles of near-bed time-averaged streamwise velocity, Reynolds shear
stress and TKE. (a) Quantities averaged over transverse lines and (b) over longitudinal lines. The black curve
shows the average while the grey area is delimited by the average ± the standard deviation. The dashed grey
lines depict the position of the crest of the hemispheres of the rough bed.

TKE downstream and between the boulders, respectively, for low and intermediate Froude
numbers and a much lower relative submergence h/D = 0.8, indicating that these patterns
persist even when the boulders emerge from the water and the free-surface effect is limited.
Local peaks of TKE are also observed in the horizontal plane just above the rough bed,
indicating a local increase of the turbulence at the top of the hemispheres as previously
observed by Fang et al. (2018).

To assess the scale of spatial variations of the time-averaged streamwise velocity,
turbulent stresses and TKE along the streamwise and spanwise directions just above the
rough bed are shown in figure 6 along with the standard deviation. Two characteristic
length scales are clearly visible in both directions, a larger one induced by the boulders
and a smaller produced by the rough bed. Since the flow accelerates in the vicinity of
the boulders, there is a peak of transverse-averaged streamwise velocity at the boulder
locations denoted with a letter B in figure 6(a). Conversely, at the same location a
minimum of −u′w′ and TKE are observed as these quantities decrease (see figures 3
and 5). All longitudinal-averaged quantities reach a minimum at the boulders (figure 6b),
resulting from the low velocities and Reynolds stresses in the wake. Maximum values
of longitudinal-averaged velocity, TKE and shear stress are observed in the high-velocity
region between the boulders in the transverse direction (figure 6b). Since bedload transport
occurs mostly in the streamwise direction, it may be inferred that the streamwise-averaged
Reynolds shear-stress profile depicted in figure 6(b) would contribute to erosion between
the boulders, where high values of turbulent shear stresses exist, and deposition in the
wake where low values are observed. This is consistent with sediment deposition patches
observed within the same array of boulders by Papanicolaou et al. (2018).

3.3. Instantaneous flow: vorticity and isosurfaces of Q
To show the complex 3-D instantaneous flow around the boulders and the rough bed,
in figure 7 we show a snapshot of non-dimensional spanwise and vertical vorticity and
magnitude (including all three components). The vertical plane is located at the middle
of the central boulder, while the two horizontal planes correspond to the mid-boulder
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Figure 7. Non-dimensional instantaneous resolved flow field: (a) vorticity normal to the plane and (b) vorticity
magnitude. The vertical plane (top) is located at the middle of the central boulder y/D = 3 whereas the two
horizontal planes (centre and bottom) correspond to the mid-boulder elevation (z − rrb)/D = 0.5 (centre) and
just above the rough bed (z − rrb)/D ≈ 0 (bottom).

elevation and just above the rough bed. The instantaneous vorticity patterns observed
in the wake of the boulders in figure 7 are in good agreement with the observations of
Papanicolaou et al. (2012) and Zhao et al. (2016), and the vortices induced by the rough
bed also agree with the findings of Fang et al. (2018) and Bomminayuni & Stoesser (2011).
The spanwise vorticity and magnitude show the shear layer that separates the high- and
low-velocity regions around the boulders, and the strong vorticity produced in the wake
of the central boulder. The horizontal planes allow the comparison between two different
elevations that correspond to the centre of the boulders and slightly above the rough bed
where competing processes control the instantaneous flow dynamics. Namely, at the mid-
boulder elevation, the vorticity patterns are mainly a result from the boulders wake. Close
to the rough bed, local peaks of positive and negative vertical vorticity are observed at each
side of the top of the hemispheres together with peaks of vorticity magnitude slightly above
their crests. A decrease of vorticity is also observed in the wake of the boulders close to the
rough bed. Figure 7 also illustrates the ability of LES to reproduce the complex turbulent
dynamics induced by the array of boulders and the interactions with the rough bed.

The Q-criterion is used to detect coherent structures and visualise the 3-D instantaneous
structure of the wake, identifying regions where the local rotation rate is larger
than the strain rate, given by the second invariant of the velocity gradient tensor
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Figure 8. Sequence of non-dimensional Q isosurfaces (Q = 15) show the 3-D instantaneous structure of the
wake of the central boulder. The images are coloured by the dimensionless streamwise velocity. The figures
at the left and the right are separated by one non-dimensional time (h/Ub). Panels (a) and (b) show the
wake slightly above the rough bed (z − rrb)/D = 0.13; (c) and (d) are sliced through a horizontal plane at
(z − rrb)/D = 0.65 and (e) and (f ) by a vertical plane at y/D = 3. The locations of prominent arch and shear
layer vortices are indicated by arrows.

Q = (1/2)(Ωi jΩi j − Si j Si j ) > 0. Figure 8 shows isosurfaces of non-dimensional Q = 15
downstream the central boulder, coloured by the non-dimensional streamwise velocity.
Quantities are normalised using the bulk velocity and the boulder diameter. Two snapshots
separated by one non-dimensional time (i.e. h/Ub) are shown in figure 8 where (a),
(c) and (e) correspond to the first instant and b,d and f to the second. Figures 8(a), 8(b)
show almost the entire wake from slightly above the rough bed ((z − rrb)/D = 0.13),
whereas figures 8(c), 8(d) only show the top region closer to the shear layer (cut by a
horizontal plane at (z − rrb)/D = 0.65) and figures 8(e), 8(f ) show the middle of the
wake, cut by a vertical plane at y/D = 3. The slices of streamwise velocity allow a clear
visualisation of the wake and the vortices that emerge from the shear layer. Arch vortices
are identified in the proximity of the boulder as proposed by Hajimirzaie et al. (2014).
These structures are primarily vertically oriented and travel downstream before being
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fragmented, only surviving approximately two diameters downstream. Shear layer vortices
of horseshoe shape are also observed as indicated in figure 8, with their heads oriented
downstream and at a higher elevation and therefore moving faster than their legs. These
vortices have been widely observed in previous studies in the wake of spheres and wall-
mounted hemispheres (Liu et al. 2017; Kamble & Girimaji 2020; Li et al. 2022). These
structures emerge from the shear layer and therefore exist far from the bed in a zone of
high streamwise velocity, TKE and Reynolds shear stresses contributing to the production
of TKE −u′w′(∂u/∂z). Consequently, they may also play an important role in suspended
transport of sediments and nutrients. The figures and animations reveal a rich dynamics,
in which shear layer vortices are advected downstream while deformed by high shear, and
sometimes breaking into longitudinal structures, which are elongated and advected further
downstream.

3.4. Quadrant analysis of near-bed Reynolds shear stress
From the simulations we can also analyse the distribution of near-bed turbulent events
through the joint frequency distribution of u′ and w′, as shown in figure 9 at different
locations around the central boulder. According to the sign of the streamwise and vertical
velocity fluctuations at a given point, the joint frequency of u′ and w′ is sorted in four
different quadrants representing outward interactions (Q1, u′ > 0 and w′ > 0), ejections
(Q2, u′ < 0 and w′ > 0), inward interactions (Q3, u′ < 0 and w′ < 0) and sweeps (Q4,
u′ > 0 and w′ < 0) (Wallace 2016). The joint distributions depicted in figure 9(a,b,c)
show elliptically shaped contours with negative slope resulting from the strong negative
correlation of u′ and w′ in the high-velocity region between the boulders as is typically
found in the near-bed region in open-channel flows, where sweeps (Q4) and ejections (Q2)
are the dominant contributions to turbulent stresses rather than outward (Q1) and inward
(Q3) interactions. Points located upstream (second row, figure 9d,e,f ) and downstream
(third row, figure 9g,h,i) of the boulders, on the other hand, still present a rather elliptical
shape with a horizontal slope. This zero axis symmetry implies a very small and close
to zero average value of u′w′ compared with the intensity of the observed turbulent
fluctuations. This is especially true for points located upstream the boulders (figure 9d,e,f )
since velocity fluctuations are still large there but turbulent stresses are small as positive
and negative values of u′w′ are equally represented. At those locations not only sweeps
and ejections become important but also outward and inward interactions as previously
observed by Fang et al. (2017). The important conclusion here is that local turbulent
stresses are a good representation of instantaneous events in locally uniform flows due
to the strong negative correlation between u′ and w′ (as here within the transverse region
between the boulders). However, this statement fails for regions upstream and downstream
the boulders where the correlation is low and hence the mean value (i.e. turbulent
stresses) no longer correctly represents the instantaneous turbulent events. This was first
observed by Nelson et al. (1995), who measured near-bed velocities and bedload transport
at different distances downstream a backward facing step. They found that sweeps and
outward interactions became predominant and contributed more significantly to bedload
fluxes, differing from a well-developed boundary layer. A decrease of the correlation
between u′ and w′ characterised by the existence of a horizontal rather than a large negative
slope as the typical behaviour in wall turbulence was also observed by Guan, Agarwal &
Chiew (2018) in the low-velocity region inside a vertical cavity. This has important
consequences since bedload fluxes may be poorly correlated to near-bed shear stress in
non-uniform flows (Yager et al. 2018).

Our simulations are in good agreement with experiments and other numerical results
available in the literature. As described above, the flow presents a complex 3-D dynamics
1014 A21-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
31

2 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10312


Journal of Fluid Mechanics

y/D

u′/u*

w
′ /u

∗

w
′ /u

∗

w
′ /u

∗

w
′ /u

∗

w
′ /u

∗

w
′ /u

∗

w
′ /u

∗

w
′ /u

∗

w
′ /u

∗

x/D

d e

a

f g h

c

i

b

6

5

4

3

2

1

0

3

2

1

0

–1

–2

–3

3

2

1

0

–1

–2

–3
–4 –2 0 2 4

u′/u*

–4 –2 0 2 4

3

2

1

0

–1

–2

–3

u′/u*

–4 –2 0 2 4

u′/u*

3

2

1

0

–1

–2

–3

3

2

1

0

–1

–2

–3
–4 –2 0 2 4

u′/u*

–4 –2 0 2 4

3

2

1

0

–1

–2

–3

u′/u*

–4 –2 0 2 4

u′/u∗ u′/u∗ u′/u∗

3

2

1

0

–1

–2

–3

3

2

1

0

–1

–2

–3
–4 –2 0 2 4 –4

0 0.02 0.04 0.06 0.08 0.10

–2 0 2 4

3

2

1

0

–1

–2

–3
–4 –2 0 2 4

2 4 6 8 10

(x = 2.5D, y = 4.5D)

u′w′/u∗2 = –0.62
–––

(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

(x = 5D, y = 1.5D)

u′w′/u∗2 = –0.46
–––

(x = 7.5D, y = 4.5D)

u′w′/u∗2 = –0.66
–––

(x = 1D, y = 3D)

u′w′/u∗2 = –0.09
–––

(x = 3D, y = 3D)

u′w′/u∗2 = –0.14
–––

(x = 4D, y = 3D)

u′w′/u∗2 = –0.01
–––

(x = 6D, y = 3D)

u′w′/u∗2 = 0.01
–––

(x = 7D, y = 3D)

u′w′/u∗2 = –0.06
–––

(x = 9D, y = 3D)

u′w′/u∗2 = –0.15
–––

Figure 9. Joint frequency distributions of near-bed u′ and w′ at different locations. The locations in the
horizontal plane are depicted in the schematic figure at the top. The position and the value of the turbulent stress
at each point is shown inside the panels. First row corresponds to points located between the boulders (high-
velocity region), and second and third rows to points located upstream and downstream the central boulder,
respectively.

characterised by a strong interaction between the rough bed and the wakes of the boulders.
The mean flow exhibits large spatial variations along with the emergence of SCs. The
shear layer generated at the boulders crest, as well as the local turbulence produced by
the hemispheres of the rough bed result in large TKE and Reynolds shear stress and
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significant spatial variations of these quantities. The instantaneous flow is characterised
by large vorticity and large-scale coherent structures in the wake of the boulders emerging
from the shear layer and advected downstream. Therefore, upscaling the influence of these
observations with the double-averaged methodology will be presented in the next section
as it is critical to consider the turbulence generated at the level of the roughness elements
on a larger-scale analysis often applied in models for sediment transport.

4. Double-averaged momentum and energy equations
In this section we summarise the double-averaged momentum and energy conservation
equations to contextualise the results and analysis that will be presented in the subsequent
sections.

4.1. Double-averaged momentum balance
We use the double-averaged decomposition for the instantaneous velocity and pressure as
proposed by Nikora et al. (2007). The time decomposition of the instantaneous and local
velocity is given by ui = ui + u′

i , where the overbar and prime denote time average and
fluctuation, respectively. Similarly, the spatial decomposition of the time-averaged velocity
is expressed as ui = 〈ui 〉 + ũi , where brackets denote the spatial average and tilde the spa-
tial fluctuation with respect to the time-averaged field. The intrinsic spatial average as out-
lined by Nikora et al. (2007) is used here. It is performed over the volume occupied by the
fluid V f within the total averaging volume V0, with φ(z) = V f /V0 the porosity function.

In general, the spatial averaging is performed over thin slabs with small thickness and
horizontal area much larger than the scale of spatial fluctuations induced by the roughness
elements, but much smaller than the global changes in the flow and bed topography.
Here, we consider steady 2-D double-averaged flow, i.e. uniform in the streamwise and
spanwise directions (〈v〉 = 〈w〉 = ∂ 〈.〉/∂x = ∂ 〈.〉/∂y = ∂/∂t = 0). According to Nikora
et al. (2007), under these assumptions the streamwise momentum balance integrated along
z reduces to(

1 − φz

h

)
u2∗ = −φ〈u′w′〉 − φ 〈ũw̃〉 + νφ

〈
∂ui

∂z

〉
︸ ︷︷ ︸

τ f luid

−
∫ zc

z

1
ρV0

∫∫
Sint

pni dS dz︸ ︷︷ ︸
τp

+
∫ zc

z

ν

V0

∫∫
Sint

∂ui

∂x j
n j dS dz︸ ︷︷ ︸

τv

, (4.1)

where zc corresponds to the top of the interfacial sublayer (i.e. crest of the roughness
elements), Sint is the water–sediment interface and ni is the unit vector normal to the bed
surface pointing into the fluid. The shear-stress balance includes turbulent 〈u′w′〉, form-
induced 〈ũw̃〉 and viscous stresses 〈∂ui/∂z〉, which together correspond to the total fluid
stress τ f luid , and pressure τp and viscous drag τv , which are a sink of momentum caused
by the roughness elements. The form-induced stress term is also the covariance of spatial
velocity fluctuations. The last two terms in the right-hand part are zero above the roughness
elements.

4.2. Double-averaged kinetic energy budget
The total kinetic energy is now composed by the mean (MKE), turbulent (TKE) and form-
induced or dispersive (DKE) contributions
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1
2

〈ui ui 〉 = 1
2

〈ui 〉 〈ui 〉︸ ︷︷ ︸
MKE

+ 1
2

〈
u′

i u
′
i

〉
︸ ︷︷ ︸

TKE

+ 1
2

〈ũi ũi 〉︸ ︷︷ ︸
DKE

. (4.2)

Papadopoulos et al. (2020) derived the kinetic energy budgets for open-channel flows
with rough beds using the intrinsic average and the porosity function. For a fixed bed and
a double-averaged steady and uniform flow in the streamwise and spanwise directions,
the energy conservation equations for MKE, DKE and TKE are simplified as follows
respectively (see Papadopoulos et al. 2020 for details):

0 = φ 〈u〉 gSb︸ ︷︷ ︸
Sg

+ φ〈u′w′〉∂ 〈u〉
∂z︸ ︷︷ ︸

IT M

+ φ 〈ũw̃〉 ∂ 〈u〉
∂z︸ ︷︷ ︸

IDM

+ 〈u〉
ρV0

∫∫
Sint

pn1dS︸ ︷︷ ︸
Ip

− ν 〈u〉
V0

∫∫
Sint

∂u

∂x j
n j dS︸ ︷︷ ︸

Iv

− ∂φ〈u′w′〉 〈u〉
∂z︸ ︷︷ ︸

T MT

− ∂φ 〈ũw̃〉 〈u〉
∂z︸ ︷︷ ︸

T MD

+ ν
∂

∂z

(
〈u〉 ∂φ 〈u〉

∂z

)
︸ ︷︷ ︸

T Mv

− φν
∂ 〈u〉
∂z

∂ 〈u〉
∂z︸ ︷︷ ︸

εM M

− φν

〈
∂ ũ

∂z

〉
∂ 〈u〉
∂z︸ ︷︷ ︸

εM D

, (4.3)

0 = − φ〈ũw̃〉∂〈u〉
∂z︸ ︷︷ ︸

IDM

+ φ

〈
u′

i u
′
j
∂ ũi

∂x j

〉
︸ ︷︷ ︸

IT D

− 〈u〉
ρV0

∫∫
Sint

pn1dS︸ ︷︷ ︸
Ip

+ ν〈u〉
V0

∫∫
Sint

∂u

∂x j
n j dS︸ ︷︷ ︸

Iv

− 1
2

∂φ 〈ũi ũi w̃〉
∂z︸ ︷︷ ︸

T DD

−
∂φ
〈
ũi u′

iw
′
〉

∂z︸ ︷︷ ︸
T DT

− 1
ρ

∂φ 〈 p̃w̃〉
∂z︸ ︷︷ ︸

T Dp

+ ν
∂

∂z

(
φ

〈
ũi

∂ ũi

∂z

〉)
︸ ︷︷ ︸

T Dv

− φν

〈
∂ ũ

∂z

〉
∂ 〈u〉
∂z︸ ︷︷ ︸

εM D

− φν

〈
∂ ũi

∂x j

∂ ũi

∂x j

〉
︸ ︷︷ ︸

εDD

, (4.4)

0 = − φ〈u′w′〉∂ 〈u〉
∂z︸ ︷︷ ︸

IT M

− φ

〈
u′

i u
′
j
∂ ũi

∂x j

〉
︸ ︷︷ ︸

IT D

− 1
2

∂φ
〈
u′

i u
′
i w̃
〉

∂z︸ ︷︷ ︸
T TD

− 1
2

∂φ
〈
u′

i u
′
iw

′
〉

∂z︸ ︷︷ ︸
T TT

− 1
ρ

∂φ〈p′w′〉
∂z︸ ︷︷ ︸

T Tp

+ 1
2
ν

∂

∂z

(
∂φ〈u′

i u
′
i 〉

∂z

)
︸ ︷︷ ︸

T Tv

− φν

〈
∂u′

i

∂x j

∂u′
i

∂x j

〉
︸ ︷︷ ︸

εT T

. (4.5)

The energy is injected into the mean flow by the potential energy coming from
gravity (Sg). Part of this energy is transferred to the turbulent and form-induced fields
by the work done by turbulent and form-induced stresses against the mean flow (IT M
and IDM , respectively). These terms are usually negative, and therefore represent a sink of
MKE and a gain of TKE and DKE. Term IT D corresponds to the kinetic energy transferred
from the form-induced flow to the turbulent field (usually negative and hence a gain
of TKE and a loss of DKE). Energy coming from viscous (Iv), and pressure (Ip) drag
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Figure 10. (a) Double-averaged velocity profile where the inset corresponds to the porosity function around the
rough bed (zero is the crest of the hemispheres). (b) Double-averaged velocity gradient where the red dashed
line shows a constant value obtained around the boulders. The dashed horizontal lines in (a) and (b) correspond
to the top of the rough bed (rb) and the top of the boulders (B).

constitute a loss of MKE and a gain of DKE. Terms IT M , IDM , IT D , Iv and Ip, are
then inter-budget exchanges between MKE, TKE and DKE. The following terms in the
equations correspond to transport of kinetic energy by turbulence: T MT (of MKE), T TT
(of TKE) and T DT (of DKE); form-induced stresses T MD (of MKE), T TD (of TKE)
and T DD (of DKE); pressure T Tp (of TKE) and T Dp (of DKE); and viscosity T Mv

(of MKE), T Tv (of TKE) and T Dv (of DKE). Finally, energy is dissipated into heat by
viscosity through εM M , εM D , εT T and εDD .

5. Double-averaged momentum conservation equation

5.1. Double-averaged velocity
To apply the double-averaging procedure, the intrinsic averaging is performed over thin
slabs covering the entire horizontal area and the grid spacing 
z. A large slab is needed
to include all spatial disturbances of the time-averaged quantities and therefore reach a
steady and statistically 1-D flow, with velocity statistics depending only on z. We checked
that this is achieved as 〈v〉, 〈w〉, 〈u′v′〉 and 〈v′w′〉 are almost zero along the entire water
depth, for the chosen spatial-averaging slabs.

The averaged velocity profile and velocity gradient along the vertical coordinate are
depicted in figure 10. As observed previously (Dey & Das 2012; Sarkar et al. 2016), it
presents the typical shape of flows over rough beds and obstacles, with a velocity deficit
and inflection points above the boulders and at the top of the rough bed resulting from
the shear layer generated by the obstacles. Within the rough bed, near the trough of the
hemispheres, the velocity becomes slightly negative as already observed by Pokrajac,
McEwan & Nikora (2008) in the case of ‘d-type’ roughness elements.

The vertical variations in the velocity profile are influenced by dynamic processes within
the water column, which depend on the roughness characteristics and bed configuration.
While the velocity profile above the rough bed appears to be linear, the velocity gradient
shown in figure 10(b) reveals a more complex structure. The gradient exhibits a second-
degree polynomial shape, indicating that the velocity profile in this region follows a
third-degree polynomial. Within the boulder layer, the velocity profile transitions to a
linear behaviour, characterised by a constant velocity gradient (red line in figure 10b).
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Figure 11. (a) Logarithmic law of the wall for fully rough conditions shown in (5.1) fitted to the double-
averaged velocity data computed from the LES where ks−dat = 0.9D is obtained. (b) Comparison of velocity
profiles obtained from LES, the one fitted from (5.1) with ks−dat and the one using ks−mod computed from the
method of Meneveau et al. (2024).

These findings align with the observations of Sarkar et al. (2016) for gravel beds with
large gravel obstacles.

In the flow over a rough bed with macroroughness elements the universal log law may
be present depending mainly on the flow relative submergence. The logarithmic velocity
profile is produced above the form-induced sublayer (Nikora et al. 2001), which in fully
rough conditions is expressed as follows (White & Majdalani 2006):

〈u〉
u∗

= 1
κ

ln
(

z

ks

)
+ 8.5, (5.1)

where κ = 0.41 is the von Kármán constant and ks is the effective roughness height
obtained by fitting the log law to the velocity profile, as shown in figure 11, where a value
of ks−dat = 0.9D is obtained. It is not straightforward to estimate ks when no information
of the velocity profile is available, especially in the case of multi-scale roughness. Huang
et al. (2016) suggested the use of a fraction of the roughness length based on the roughness
density parameter depending on the flow regime: isolated, wake interfering or skimming,
without considering multi-scale roughness conditions. Recently Meneveau et al. (2024)
formulated a novel method to estimate ks based solely on geometric surface information
of the rough bed elevation hb(x, y). The method approximates the total drag fx generated
on the rough surface using the local slope ∂hb/∂x , a sheltering function Fsh(x, y; θ), and
the potential flow over a ramp at an angle α to estimate the velocity Uk at height zk . Their
equations are written as follows:

fx = u2∗ A = UkWL , (5.2)

where WL is the wind-shade factor in the longitudinal direction, expressed as

WL =
〈
n̂2

x (x, y)
α

π + α

∂hb

∂x
Fsh(x, y; θ)

〉
x,y

, (5.3)

where α = arctan|∇hhb(x, y)| and Fsh = H(θ − β(x, y)), where ∇h = ∂x i + ∂y j , H(x)

is the Heaviside function and β is the backward horizon angle only depending on the
surface geometry. Then Uk = 1/

√WL and ks can be estimated based on (5.1) for Uk at
zk = apk′

p, where k′
p is estimated with a ramp function. The turbulence spreading angle

θ = 10 degrees and ap = 3 were established as suggested by Meneveau et al. (2024) as the
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values that gave the highest correlation between ks−dat and ks−mod . Then, ks−mod can be
computed from (5.1) as

ks−mod

krms
= ap

k′
p

krms
exp

[−κ
(
U+

k − 8.5
)]

, (5.4)

where krms = 〈(hb − k)2〉1/2 and k = 〈hb〉. This method can be applied to multiple rough
bed configurations with the only limitation of having a single-valued function of h at
each point (x, y) in the horizontal plane. Therefore, since this is not true for spheres,
the geometry of the lower part of the boulders is slightly modified. The value of ks−mod
is estimated based on the surface roughness geometry hb(x, y) used in the present
study and compared with the value obtained by fitting the log law of (5.1) to the LES
data (ks−dat , figure 11a). A value of ks−mod = 1.13D is obtained (figure 11b), which
agrees well with the observed value ks−dat = 0.9D. The ratios ks−mod/ks−dat = 1.25 and
ks−dat/krms = 5.9 are in good agreement with the majority of the values observed by
Meneveau et al. (2024) when evaluating the performance of their model. As they indicate,
in the presence of a few large-scale and many small-scale elements, the method can result
in an over-prediction of the drag. Therefore, the authors proposed the use of a 1/7 velocity
power law impinging on the roughness elements. However, with this correction a slightly
worse agreement between ks−mod and ks−dat is obtained resulting in an under-prediction
of the expected value ks−mod/ks−dat = 0.43.

As illustrated in figure 11(a), logarithmic profile only exists in the upper layer, within a
small fraction of the water depth corresponding to (z − rrb)/D between 2.5 and 3.5. This
agrees with the findings of Sarkar et al. (2016). Figure 11 shows that ks is relatively well
predicted by the method of Meneveau et al. (2024). However, it is important to note that
this parameterisation was developed to characterise drag based solely on surface roughness
geometry, or an equivalent roughness length (ks or z0), and it does not imply the presence
of a universal log-law profile. In the low relative submergence conditions of the present
study, the emergence of a fully developed log layer is unlikely. For instance, Jiménez
(2004) suggested that a true log law requires the flow depth to be at least 40 times the
roughness scale, which is much larger than in our configuration.

5.2. Double-averaged shear-stress contributions
To evaluate the different terms of the total shear stress in the water column as given by
(4.1), in figure 12 we show the vertical profiles of the contribution of each term. At the top
of the hemispheres, the total fluid stress corresponds to approximately half of the total bed
shear stress, which is an integral of pressure and viscous drag terms due to both the rough
bed and the boulders. Red and blue lines in figure 12 show that the actual force acting on
the hemispheres is half the total drag (or bed shears stress which is due to both boulders
and hemispheres). This observation has important implications for sediment transport as
it demonstrates the power of the double-averaging approach for isolating part of the total
drag which is directly relevant for bed particle mobilisation.

Local peaks of turbulent and form-induced stresses appear at the top of the roughness
elements, and global peaks of turbulent and form-induced stresses are produced at the top
and centre of the boulders, respectively. The peak of turbulent stress agrees with previous
experimental observations in gravel beds, related to the production of TKE in the shear
layer generated at the top of the roughness elements of the bed, as shown in figure 5
(Mignot et al. 2009; Sarkar & Dey 2010; Dey & Das 2012). Within the boulder region,
an increase in Reynolds stress partially compensates with a decrease in form-induced
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Figure 13. Ratio between form-induced stresses and (a) turbulent stresses, and (b) total shear-stress
distribution.

stress, which agrees with the previous findings of Zampiron et al. (2021) in the flow over
triangular-shaped ridges.

Form-induced stresses and total drag generated by the boulders and rough bed signifi-
cantly affect a considerable portion of the water column. The drag caused by the roughness
elements creates an inflection point in the fluid stress profile at the boulder tops (red curve
in figure 12), where shear stress increases above this point and decreases below it.

In figure 13 we show the relative magnitude of the form-induced stress to turbulent
stress, and to the total shear-stress distribution. Form-induced stress is comparable to the
turbulent stress in the region within the boulders. Below the top of the rough bed this
ratio has a higher uncertainty due to the low values of Reynolds stresses resulting from an
attenuation of turbulence within the rough bed. In the boulder region, the form-induced
to turbulent-stress ratio monotonically increases from slightly above the top of the rough
bed to the middle of the boulders, reaching a peak where form-induced stresses almost
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equal turbulent ones (〈ũw̃〉/u′w′ ≈ 0.9 at the location of the global peak of form-induced
stress). Then this ratio decreases toward the top of the boulders, where the turbulent stress
reaches its global peak. In the rest of the water column, these ratios are small and relatively
constant.

The peak stress ratio is generally higher than previously reported values for rough
beds with varying roughness shapes, configurations and relative submergence (Mignot
et al. 2009; Sarkar & Dey 2010; Dey & Das 2012; Sarkar et al. 2016). This is primarily
due to the low relative submergence and large boulder spacing used here, which allows
wakes to develop freely, causing significant spatial variations within the averaging volume.
Another contributing factor is the influence of the SCs depicted in figure 4, as will
be shown and discussed in § 5.3. In the boulder layer, the form-induced stress exhibits
a large contribution to the total shear-stress distribution (〈ũw̃〉/τ ), reaching a peak of
approximately 0.37 slightly above mid-boulder elevation (figure 13b).

The ratio of maximum form-induced stress to bed shear stress (〈ũw̃〉 /u2∗ ≈ 0.3) aligns
with the range observed for SCs (0.25–0.3) over triangular and rectangular ridges
(Vanderwel et al. 2019; Zampiron et al. 2021). Unlike other geometries such as rectangles
or sharp-edged vertical surfaces, where maximum form-induced stresses typically occur
near the roughness tops (Pokrajac et al. 2007; Rouzes et al. 2019), the peak here is shifted
due to differences in geometry. Sharp-edged elements enhance the formation of the shear
layer, leading to wider wakes and more extensive vertical recirculation compared with
spherical obstacles. Within the rough bed, the contribution of form-induced stresses to
total shear stress is relatively minor, partly explained by the lower values of total fluid
stress compared with total drag.

5.3. Quadrant contribution to form-induced stresses
The DAM analysis can also provide additional insights into the different contributions to
form-induced stresses. Conditional statistics based on the quadrant analysis proposed by
Pokrajac et al. (2007) consider the spatial fluctuations of the time-averaged streamwise
and vertical velocities in analogy to the quadrant analysis used for Reynolds shear stress,
as presented in § 3.4 and in figure 9. Using this methodology we study the different
contributions to the profile of form-induced stresses depicted in figure 12, based on the sign
of ũ and w̃ resulting on four quadrants which are Q1 (ũ > 0, w̃ > 0), Q2 (ũ < 0, w̃ > 0),
Q3 (ũ < 0, w̃ < 0) and Q4 (ũ > 0, w̃ < 0). The procedure consists of the following steps:
(i) computing ũ and w̃ by subtracting the spatial mean to local time-averaged velocities
(u and w). (ii) At each averaging volume, separating the values of ũw̃ according to the
four quadrants. (iii) Then, averaging ũw̃ separately for each quadrant to calculate the mean
magnitude, and computing the relative frequency (number of points of each quadrant with
respect to the entire fluid volume). (iv) Finally, the contribution of each quadrant to the
form-induced stress at each depth is obtained as the product of the average magnitude and
the relative frequency. Profiles of the different quadrant contributions to the form-induced
stress are shown in figure 14 as a function of z. The sum of all contributions of figure 14(a)
is equal to the form-induced stress, as depicted in figure 12.

Figure 14 provides a general overview of how quadrant contributions to form-induced
stresses vary in the vertical direction. Above the rough bed, the largest contribution
comes from Q2 (ũ < 0, w̃ > 0), reaching its peak at the mid-boulder elevation. At this
level, Q2 bears 66 % of the total form-induced stress (see figure 14b). Contributions
from Q4 are also large compared with Q1 and Q3 above the rough bed. Below, larger
contributions from Q2 and Q4 are mostly observed, where the latter bears 54 % of the
total form-induced stress at the middle of the rough bed layer. At each vertical level,
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Figure 14. Profiles of the different contribution to form-induced stress. The different quadrants correspond to
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form-induced stresses approach zero. The inset corresponds to a zoom within the rough bed.

negative contributions to form-induced stress are much larger in magnitude compared
with positive ones, in agreement with previous observations (Jelly & Busse 2018; Padhi
et al. 2018). This implies that the spatial variability induced by the boulders and the rough
bed generates an additional apparent forcing that contributes to the total fluid stress rather
than suppressing it. This agrees with previous experimental observations of the flow over
gravel beds, where form-induced stresses are negative within and above the roughness
elements (Mignot et al. 2009; Sarkar & Dey 2010; Dey & Das 2012).

To unpack the effects of the 3-D dynamics on form-induced stresses, we investigate the
spatial distribution of velocity fluctuations (ũ and w̃), local form-induced stress (ũw̃) and
quadrant maps shown in figure 15. We consider two horizontal planes vertically located at
the local and global peaks of the form-induced stress profile, i.e. near the top of the rough
bed and at the mid-boulder level respectively (see figure 12).

The region downstream of the boulders at mid-depth is characterised by Q2-type
events, with negative spatial fluctuations of streamwise velocity ũ, and positive vertical
velocity fluctuations w̃. In the high-velocity regions between the boulders, long Q4 regions
are observed with small pockets of Q1 at the sides of the boulders, where the spatial
fluctuations of vertical velocity become positive. These patterns persists as the horizontal
plane moves closer to the rough bed, as shown in the right-hand panels of figure 15. At
(z − rrb)/D ≈ 0 we still observe mostly Q2 events in the wakes of the boulders, Q4 events
in the high streamwise velocity region between boulders and Q1 events on the edge of the
wakes. However, significant changes are observed near the rough bed, since the variability
of all the quantities is mostly observed between the roughness elements. Another
important difference is the switch from Q2 to mostly Q4 (also some presence of Q3 and
Q1) in the region upstream of the boulders when moving from the mid-boulder elevation to
the top of the rough bed. The highest local form-induced stresses as illustrated in figure 15
(bottom row) are found in the wake of the boulders and are mostly negative stresses.

Figure 16 also presents the cross-sectional distribution of longitudinal-averaged ũw̃

together with transverse-averaged ũw̃ in the vertical plane. Patterns of ũw̃ observed
in figure 16 result from the combined contribution of wake turbulence and SCs to
streamwise (ũ) and vertical (w̃) velocity disturbances. Namely, the upward flow (positive
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Figure 15. From top to bottom: quadrant map, streamwise and vertical spatial disturbances and the local
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w̃ coming from SC cells, see figure 4) together with the slow streamwise velocity at the
boulders locations (negative ũ coming from the wakes) produce large and negative ũw̃.
Similarly, the downward flow between the boulders in the transverse direction and the
high streamwise velocities in this regions also generate high negative ũw̃.

As it was shown with the quadrant maps, form-induced stresses are generated due to the
combined effect of SCs and roughness-induced turbulence. In this regard, Nikora et al.
(2019) proposed partitioning the total form-induced stress into these two contributions
based on the idea that they usually act on two separate scales. However, in the case of the
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Figure 16. (a) Cross-sectional distribution of longitudinal-averaged ũw̃ and (b) vertical plane of
transverse-averaged ũw̃.

present study, SC cells have a size which is of the same order of magnitude as the turbulent
wake length scale, and therefore, it is not possible to separate roughness-scale effects from
SC effects in the region within the boulders.

The quadrant map reveals distinct spatial regions corresponding to the different
quadrants, with well-defined boundaries. The clear delineation of these regions stems from
the strong spatial coherence of the time-averaged flow, which is driven by the 3-D wake
turbulence generated by the boulder array and the induced SCs. While the quadrant maps
proposed by Pokrajac et al. (2007) provide spatial distributions for each quadrant, they do
not give information on the magnitude, direction or coherence of the velocity fluctuations
within these regions. To address this limitation, we also analyse quadrant diagrams based
on the spatial velocity fluctuations ũ and w̃. This approach enables detection of persistent
spatial patterns in the time-averaged flow, which is particularly useful for studying wakes.
For example, if the time-averaged flow is random in space, the quadrant diagram points
(ũ, w̃) will be scattered. Conversely, a distinct pattern in their distribution indicates a
spatially organised time-averaged flow. As noted by Pokrajac et al. (2007), the radius of
the vector in the quadrant diagram measured from the origin represents the magnitude of
the form-induced velocity, while the angle indicates the direction of the flow.

Figure 17 shows the quadrant diagram at different elevations with points that are
coloured based on their position in the horizontal plane. The quadrant at the top of the
rough bed depicts a scattered cloud of points, indicating that the roughness elements
at the bed do not induce a spatially persistent organisation of the time-averaged flow.
From just above the rough bed to the top of the boulders, a well-defined spatial profile
of the time-averaged flow emerges. Points marked in black, which represent the wake
of the boulders, exhibit larger streamwise velocity fluctuations compared with vertical
components, creating an elongated structure. This structure extends from slightly above
the rough bed to just past the mid-boulder level, where it diminishes significantly. The
largest disturbances (points with the greatest radius in the quadrant diagram) are observed
directly behind the boulders and decrease downstream.

An important implication of this pattern is that the spatial structure associated with
the wake of the boulders, shown in black, contributes significantly to the form-induced
stress up to the mid-boulder level. This structure also represents a large portion of the
contribution from Q2, as it is characterised by high values of both streamwise and vertical
velocity fluctuations. At mid-boulder elevation, where the form-induced stress profile
peaks globally, the stress reaches 〈ũw̃〉/u2∗ = −0.16, which is close to the total contribution
(73 %) from Q2 at this level (〈ũw̃〉/u2∗ = −0.22), and a substantial portion of the total
stress (〈ũw̃〉/u2∗ = −0.3). This pattern does not appear at the top of the rough bed, where
positive stresses (corresponding to Q3) induced by the roughness elements are also present
in the wake of the boulders. The rough bed consists of hemispheres arranged in a skimming
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Figure 17. Quadrant diagrams for different elevations, including from the top of the rough bed to slightly above
the boulders. Points are coloured according to their location in the horizontal plane as depicted in the schematic
figure at the top.

regime, interfering strongly with each other, whereas the boulders belong to an isolated
regime with the wakes developing freely.

6. Double-averaged kinetic energy conservation equation

6.1. Double-averaged normal stresses and kinetic energy
To assess the contribution of form-induced stresses to DKE and compare it with the
contribution of turbulent stresses to TKE, figure 18 presents the profiles of normal
turbulent and form-induced stresses, as well as the evolution of TKE and DKE with height.
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The normal streamwise form-induced stress is larger than the turbulent counterpart across
most of the region between the bed and the top of the boulders, highlighting the significant
role of wake turbulence in generating additional stresses. While all turbulent-stress
components contribute to TKE, only the streamwise component of form-induced stresses
is considerable, being much larger than the spanwise and vertical stresses coming from
SCs. These larger values of 〈ũũ〉 compared with 〈ṽṽ〉 and 〈w̃w̃〉 have been consistently
observed in previous studies, regardless of bed shape and configuration (Yuan & Piomelli
2014; Fang et al. 2018). Conversely, no clear tendencies exist for the two other components
but depend on the rough-surface topography. The large values of streamwise form-induced
stress arise from the strong spatial variations generated by the boulder array (see the ũ
map in figure 15). Even though the streamwise form-induced stresses are significantly
larger than their turbulent counterparts, DKE remains smaller than TKE throughout nearly
the entire water column. This is because turbulent stresses in the spanwise and vertical
directions are large, while the corresponding form-induced stresses are negligible. Local
peaks of TKE, DKE and normal streamwise stress are observed near the top of the rough
bed. Additionally, similar to the shear-stress profile, global peaks for both form-induced
and turbulent stresses are found at the middle and top of the boulders height, respectively,
specially streamwise normal stresses and kinetic energy (see figure 5b for comparison with
local TKE values).

6.2. The MKE, TKE and DKE budgets
The analysis of the 3-D flow generated around the roughness elements from the perspective
of the double-averaged energy budgets given by (4.3)–(4.5) can provide insights into the
mechanisms of production, transport and dissipation of MKE, TKE and DKE with the
water depth. In figure 19 we show vertical profiles of the different terms of the energy
budgets. Positive values are a gain while negative ones indicate an energy loss. Drag terms
(Ip + Iv) and turbulent dissipation (εT T ) are estimated as a residual of (4.3) and (4.5),
respectively. In the MKE budget, energy is injected by gravity through the entire water
column (Sg in MKE). Then, energy is distributed by the transport terms from the excess
energy region above the roughness elements to the deficit energy zone between them.
Almost no MKE is dissipated since terms εM M and εDM in (4.3) are close to zero. Near the
rough bed, MKE is mainly transported by turbulent stresses (T MT ) toward a layer of 0.1D
below and above the bed roughness surface. A smaller fraction of MKE is also transported
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by form-induced stresses (T MD) inside the rough bed. Within the boulder region, MKE
is transported toward the first half of the layer (closer to the rough bed) from the second
half (closer to the boulder top) by form-induced stresses (T MD). Conversely, turbulent
stresses (T MT ) transport the excess of MKE in the opposite direction, from slightly above
the rough bed to the boulders top.

From the energy flux to the rough bed, a significant fraction is transferred to the
turbulent field by the term IT M , and there is a large contribution to pressure (Ip) and
viscous drag (Iv), while a smaller fraction is transferred to the form-induced field by the
term IDM . Both the drag (Ip and Iv) and IDM correspond to energy that is transformed
from MKE into DKE. On the other hand, from the energy transported towards the boulder
layer, the largest fraction is used to generate pressure (Ip) and viscous drag (Iv) thus
producing DKE, while a smaller fraction is also transferred directly to the turbulent
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(IT M ) and form-induced fields (IDM ). The DKE production that results from the action of
form-induced stresses against the mean flow (IDM in MKE) is smaller but comparable in
magnitude to turbulent production (IT M ). However, most of the energy transferred from
the mean flow to the form-induced field comes from pressure and viscous drag, which
show a larger magnitude between the rough bed and the array of boulders.

In the form-induced field, from the energy injected from the mean field, an important
fraction of DKE is transformed to TKE through IT D . The excess of DKE (i.e. production
minus dissipation) within the boulders is transported toward the rough bed by pressure
(T Dp) and turbulent stresses (T DT ) and from within the rough bed to the top of the
boulders by form-induced stresses (T DD). Almost no form-induced energy is dissipated
since εDD and εM D are close to zero (and therefore not plotted in figure 19). In the
region within and slightly above the rough bed, the terms of (4.3) do not balance since
the conditions for which the DKE budget was derived are not fulfilled in that layer. On
the other hand, in the turbulent field, energy is injected from the mean flow by IT M and
from the form-induced field by IT D where the latter is smaller than but comparable to
the former around the rough bed, and even larger around the boulders. Slightly above the
boulders (from (z − rrb)/D = 1.3), the TKE production terms are significantly larger than
the transport terms, indicating a balance between production and dissipation as observed
by Yuan & Piomelli (2014) and Zampiron et al. (2021). Within the roughness elements,
even when production terms are larger than transport terms, the latter do not vanish, and
therefore production and dissipation of energy are not at equilibrium. Moreover, since
almost no dissipation occurs in the mean and form-induced fields, all the potential energy
injected by gravity is finally dissipated by the turbulent field.

7. Conclusions
In this investigation we study the flow over a rough bed with an array of boulders
using LES, based on the experiments of Papanicolaou et al. (2012). The complex 3-D
flow dynamics, driven by strong interactions between bed roughness and boulder wakes,
significantly influences larger-scale processes when analysed using averaged velocity
profiles that are commonly employed in global analyses.

We show that a roughness parameterisation with the novel approach by Meneveau et al.
(2024) captures near-bed conditions well, but wake effects from large boulders strongly
impact velocity and turbulence statistics across a significant portion of the water column.
The double-averaged velocity profile obtained here is not universal, but strongly depends
on the roughness shape and bed configuration in the region (z − rrb)/D ≈ 0 − 2.5. The
results also show that the profile may be approximated by a third-order polynomial,
resulting from the strong velocity gradient at the rough bed surface. In the boulder region,
a linear velocity profile is obtained from (z − rrb)/D ≈ 0.3 − 1.75, indicating a constant
averaged velocity gradient. The method formulated by Meneveau et al. (2024) gives a
good estimation of ks from the geometry of the bed and assuming a logarithmic profile,
but additional work is needed to elucidate the critical parameters that characterise the
velocity profile in the roughness layer.

To gain insight into the influence of turbulent coherent structures, a double-averaged
decomposition of the flow field is applied, connecting the dynamics of these coherent
structures to the spatial distribution of stresses and the energy balance along the vertical
direction. This study provides the first detailed statistical analysis of velocity, energy and
momentum in rough beds with low relative submergence, and the upscaling of turbulent
statistics. We focus on evaluating the averaged flow velocity and stresses to unpack the
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effects of the 3-D nature of the wake turbulence generated by the rough bed and the array
of boulders within the momentum and energy budgets.

The results show that the shear layer generated at the boulders crest, as well as the local
turbulence produced by the rough bed, result in large values of TKE and Reynolds shear
stress, including significant spatial variations of these quantities, which are key factors
influencing sediment transport. The instantaneous flow is characterised by large vorticity
and coherent structures in the wake of the boulders emerging from the shear layer and
advected downstream. Based on the streamwise momentum equation, we evaluate the
different contributions to shear stress, focusing on the effective shear stress from turbulent
and form-induced components, excluding the drag from roughness elements. This effective
stress, which has important implications for bedload transport, accounts for half of the
total at the rough bed surface, highlighting the strong drag induced by the boulders. Form-
induced stresses are larger around the boulder array due to low relative submergence and
the isolated regime. Their peak nearly matches turbulent stress at mid-boulder elevation,
reaching 37 % of the total shear stress.

We apply the quadrant analysis of Pokrajac et al. (2007) to assess the contributions to
form-induced stresses based on the sign of time-averaged spatial velocity fluctuations.
Negative events (Q2, Q4) dominate over positive ones (Q1, Q3) throughout the
water column, generating additional fluid stresses beyond drag effects. The Q2 events
concentrate in boulder wakes, Q4 in high-velocity regions between boulders and Q1
at the wake edges, reflecting the strong spatial coherence of the 3-D wake turbulence.
The high magnitude negative form-induced stresses observed result from the combined
influence of roughness-induced turbulence and SCs, where the elongated wake structure
carries a significant fraction of form-induced stresses counteracting energy dissipation by
drag.

The results show that the boulders and the rough bed generate significant form-induced
kinetic energy in the entire water column, which is comparable to the TKE in the layers
surrounding the roughness elements. Large DKE is explained entirely by the contribution
of normal streamwise form-induced stresses, as opposed to TKE, where all components
are significant. The energy budget reveals that most of DKE production comes from drag
(from the mean flow) and a smaller fraction from the work done by the mean flow against
form-induced stresses. The present results illustrate how this significant form-induced
kinetic energy generated due to drag is then transferred to the turbulent field to finally
be dissipated.

These findings highlight the role of roughness elements in generating form-induced
stresses, which must be considered when assessing potential sediment transport without
including the drag component. Our results emphasise the influence of wake turbulence
in producing form-induced stresses that partly compensate the energy loss due to drag.
Energy budgets show how drag energy transfers from DKE to TKE before dissipating.
Future work will incorporate mobile sediments to link transport across scales (Escauriaza
et al. 2023), relating global bedload fluxes to effective shear stress, and local transport
and fluctuations in sediment velocities and concentration to spatial variations of the flow
field.
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