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In this paper, we define and study an equivariant analogue of Cohen, Farber and
Weinberger’s parametrized topological complexity. We show that several results in
the non-equivariant case can be extended to the equivariant case. For example, we
establish the fibrewise equivariant homotopy invariance of the sequential equivariant
parametrized topological complexity. We obtain several bounds on sequential
equivariant topological complexity involving the equivariant category. We also obtain
the cohomological lower bound and the dimension-connectivity upper bound on the
sequential equivariant parametrized topological complexity. In the end, we use these
results to compute the sequential equivariant parametrized topological complexity of
equivariant Fadell–Neuwirth fibrations and some equivariant fibrations involving
generalized projective product spaces.
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1. Introduction

A solution to the motion planning problem in robotics is given by a motion plan-
ning algorithm, which is a function that takes as inputs a pair of configurations of
a mechanical system and produces a continuous path connecting these two config-
urations as an output. More specifically, consider X to be the configuration space
of a mechanical system and XI to be the free path space of X with a compact
open topology. The free path space fibration π : XI → X × X is defined by
π(γ) = (γ(0), γ(1)). A motion planning algorithm is then a section of a free path
space fibration.

Farber [22] introduced the concept of topological complexity to analyse the diffi-
culty of computing a motion planning algorithm for the configuration space X of a
mechanical system. The topological complexity of a space X, denoted by TC(X), is
defined as the smallest positive integer k for which X ×X can be covered by open
sets {U1, . . . , Uk} such that each Ui admits a continuous local section of π. Farber
showed that a motion planning algorithm in the configuration space cannot be
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2 N. Daundkar

continuous unless it is contractible. Therefore, for non-contractible spaces, the topo-
logical complexity is at least two. The numerical invariant topological complexity
has been extensively studied over the past two decades.

To generalize topological complexity, Rudyak introduced its sequential analogue
in [38]. This models the motion planning problem for robots that need to visit
several places in between their initial and final stages while performing their tasks.
We briefly recall the definition. Consider the generalized free path space fibration
πn : XI → Xn of path-connected spaces X

πn(γ) =

(
γ(0), γ

(
1

n− 1

)
, . . . , γ

(
n− 2

n− 1

)
, γ(1)

)
. (1)

The sequential topological complexity of X is the smallest positive integer k for
which Xn is covered by open sets {U1, . . . , Uk}, such that each Ui admits a contin-
uous local section of πn. Note that by definition, it follows that TC2(X) = TC(X).
Several properties of topological complexity have been generalized and introduced
in their symmetrized version in [2].

There is an old invariant called LS-category, a close relative of sequential topolog-
ical complexity, which was introduced by Lusternik and Schnirelmann in [34]. The
LS-category of a space X is denoted by cat(X), which is the least number of open
subsets which cover X such that the inclusion on each open set is nullhomotopic.
The authors of [2] prove the following famous inequality

cat(Xk−1) ≤ TCk(X) ≤ cat(Xk).

The notion of parametrized topological complexity was introduced by Cohen,
Farber and Weinberger in [8], and the corresponding sequential analogue was intro-
duced by Farber and Paul in [23]. These parametrized motion planning algorithms
offer enhanced universality and flexibility, enabling effective operation across vari-
ous scenarios incorporating external conditions. These conditions are considered
parameters and integral components of the algorithm’s input. A parametrized
motion planning algorithm takes as inputs a pair of configurations living under
the same external conditions and produces a continuous motion of the system,
which remains constant under the external conditions.

We now define sequential parametrized topological complexity in brief. For a
fibration p : E → B, consider the fibre product En

B , the space of all n-tuples of
points in E all of which lie in a common fibre of p. The space EI

B denotes the space
of all paths in E with image in a single fibre. Note that the fibration defined in (1)
restricts to the subspace EI

B of EI. We denote this fibration by Πn : EI
B → En

B . The
sequential parametrized topological complexity of a fibration p : E → B denoted
by TCn[p : E → B] is the smallest integer k such that there is an open cover
{U1, . . . , Uk} of En

B , where each open set Ui admits a continuous section of Πn.
Note that TC2[p : E → B] is known as the parametrized topological complexity of
Cohen, Farber and Weinberger. The reader is referred to [8, 9, 23, 27] for several
interesting results related to (sequential) parametrized topological complexity. We
also mention that the notion of parametrized topological complexity of fibrations
is extended to fibrewise spaces in [28] by Garćıa-Calcines.
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Equivariant parametrized topological complexity 3

The invariants we have discussed so far are special cases of a more general notion:
the Schwarz genus of a fibration. Schwarz introduced and studied this notion in
[42]. Later, Bernstein and Ganea [4] extended and studied this notion for any map.
Let’s now define this notion. The sectional category of a map p : E → B, denoted
secat(p), is the smallest integer k for which B can be covered by k open sets
W1, . . . ,Wk, where each Wi admits a continuous homotopy section of p. If p : E →
B is a fibration, then secat(p) coincides with another invariant called the Schwarz
genus of a fibration, denoted gen(p) (see [42]). For example, TCn(X) = secat(πn),
cat(X) = secat(i : {∗} ↪→ X) and TCn[p : E → B] = secat(Πn). The reader is
referred to [33] for a more general overview of the sectional category.

Generalizing the concept of sectional category, Colman and Grant [12] first intro-
duced the corresponding equivariant analogue. The equivariant sectional category
of a G-map p : E → B between G-spaces is denoted by secatG(p) (see definition
3.1). Colman and Grant extended some of the classical results from [42] to the equiv-
ariant settings. It can be observed that the (generalized) free path space fibration is
a G-map (in fact, a G-fibration) (see §3). Colman and Grant introduced the notion
of equivariant topological complexity as a consequence of the equivariant sectional
category. The sequential analogue of this concept was introduced by Bayeh and
Sarkar in [3]. They established several interesting relationships between the equiv-
ariant category [35] and sequential equivariant topological complexity. Additionally,
they obtained new bounds on its corresponding non-equivariant counterpart.

By a (Serre) G-fibration we will mean a G-map p : E → B having the G-
homotopy lifting property with respect to all G-spaces (G-CW complexes). One
can observe that for a G-fibration p : E → B, the corresponding fibre product
En

B admits a G-action. Moreover the space EI
B is also G-invariant and the fibra-

tion Πn : EI
B → En

B is a G-map (see §4 for details). Therefore, expecting an
equivariant analogue of parametrized topological complexity is natural. In §4, we
define the sequential equivariant parametrized topological complexity as the equiv-
ariant sectional category of a G-map Πn. We denote this newly defined notion by
TCG,n[p : E → B] := secatG(Πn). This notion generalizes sequential parametrized
topological complexity. We generalize several results from the theory of sequen-
tial parametrized topological complexity. We define the fibrewise G-homotopy
equivalent fibrations (see definition 4.13) and establish the fibrewise G-homotopy
invariance of TCG,n[p;E → B] (see proposition 4.14). Later, in §4.2, we obtain
several bounds on the sequential equivariant parametrized topological complexity
involving the equivariant category of fibre product. We also obtain the cohomo-
logical lower bound theorem 4.25 and the dimension-connectivity upper bound in
theorem 4.27.

2. Sequential parametrized topological complexity

Cohen, Farber and Weinberger introduced the notion of parametrized topological
complexity in [8] ,[9]. This section briefly recalls some basic results related to this
notion.

For a Hurewicz fibration p : E → B, consider a subspace of the path space EI,
defined as follows:

EI
B := {γ ∈ EI | p ◦ γ(t) = b for some b ∈ B and for all t ∈ [0, 1]}.
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4 N. Daundkar

The fibre product corresponding to p : E → B is defined by

En
B := {(e1, . . . , en) ∈ En | p(ei) = p(ej) for 1 ≤ i, j ≤ n}.

Define a map Πn : EI
B → En

B by

Πn(γ) =

(
γ(0), γ

(
1

n− 1

)
, . . . , γ

(
n− 2

n− 1

)
, γ(1)

)
. (2)

It follows from the appendix of [9] that Πn is a Hurewicz fibration. A section of Πn

is called a sequential parametrized motion planning algorithm.
In their recent paper [23], Farber and Paul have established a theory for the

sequential parametrized topological complexity, generalizing several results of the
original parametrized topological complexity.

Definition 2.1. Let p : E → B be a fibration. The n-th sequential parametrized
topological complexity of p is denoted by TCn[p : E → B], and defined as

TCn[p : E → B] := secat(Πn).

It is observed in [23] that for a pullback fibration q : E′ → B′ along a map
f : B′ → B of p : E → B, we have

TCn[q : E′ → B′] ≤ TCn[p : E → B].

In particular, for a fibration p : E → B with fibre F, we have

TCn(F ) ≤ TCn[p : E → B]. (3)

Various bounds have been established to estimate the parametrized topological
complexity in [8], and later, these were generalized in the sequential setting in
[23]. For example, the cohomological lower bound for the parametrized topological
complexity is given in [8], and its sequential analogue is stated in [23]. We state the
sequential version of the cohomological lower bound.

Theorem 2.2 ([23, proposition 6.3]). Let p : E → B be a fibration, 4 : E → En
B be

the diagonal map and 4∗ : H∗(En
B ;R) → H∗(E;R) be the corresponding induced

homomorphism. Suppose there exists cohomology classes ui ∈ ker(4∗) for 1 ≤ i ≤ r
such that their cup product u1 ∪ · · · ∪ ur does not vanish. Then

TCn[p : E → B] ≥ r + 1.

In [23], Farber and Paul established a dimension-connectivity upper bound on the
sequential parametrized topological complexity, generalizing the base case proved
in [8, proposition 7.1].

Theorem 2.3 [23, proposition 6.1] Let p : E → B be a fibration with fibre F
such that spaces E, B and F are CW-complexes. Suppose that for m ≥ 0, F is
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m-connected. Then

TCn[p : E → B] <
ndim(F ) + dim(B) + 1

m+ 1
+ 1.

We now present the computations of the sequential parametrized topological
complexity for some fibrations. Sarkar and Zvengrowski [39] introduced a class of
topological spaces called generalized projective product spaces. We will now recall
the definition of these spaces. Let M and N be CW-complexes with involutions
τ : M → M and σ : N → N , where σ is fixed-point-free. The following identification
space is called generalized projective product space

X(M,N) :=
M ×N

(x, y) ∼ (τ(x), σ(y))
. (4)

Note that this class of manifolds includes all projective product spaces [17] and
Dold manifolds [18]. The author and Soumen Sarkar studied the LS-category and
topological complexity of generalized projective product spaces in [15].

Example 2.4. Observe that there is a fibre bundle

M ↪−→ X(M,N)
p−→ N/ 〈σ〉 , (5)

defined by p([(x, y)]) = [y], where N/ 〈σ〉 is the orbit space of the group 〈σ〉 action
on N induced by the involution σ.

It follows from theorem 2.3 that

TCn[p : X(M,N) → N/ 〈σ〉] < n dim(M) + dim(N) + 2.

In particular,

TCn[p : X(M,N) → N/ 〈σ〉] ≤ n dim(M) + dim(N) + 1.

Also, from (3), we have the following lower bound:

TCn(M) ≤ TCn[p : X(M,N) → N/ 〈σ〉].

Observe that if N = S0 with free involution, then N/ 〈σ〉 is a singleton and
X(M,N) ∼= M . Thus, TCn[p : X(M,S0) → S0/ 〈σ〉] = TCn(M).

Note that if N = S1 with the antipodal involution and TCn(M) = n dim(M)+1,
then

n dim(M) + 1 ≤ TCn[p : X(M,N) → N/ 〈σ〉] ≤ n dim(M) + 2.

One example of spaces with involutions having maximal sequential topological com-
plexity are orientable surfaces of positive genus. An orientable surface of genus g ≥ 1
can be embedded in R3 to admit antipodal involution. It was proved in [29] that
TCn(Σg) = n dim(Σg) + 1 = 2n+ 1.

In some cases, we can now compute the exact value of sequential parametrized
topological complexity. Suppose for d ≥ 2, consider M = Sd with an involution τ
obtained by reflecting Sd across the X -axis. Observe that p : X(Sd, N) → N/ 〈σ〉
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6 N. Daundkar

is a sphere bundle with structure group Z2 = 〈τ〉. One can generalize [12, example
5.9] to obtain TCZ2,n(S

d) = n+ 1. Then it follows from [25, theorem 3.4] that

TCn[p : X(Sd, N) → N/ 〈σ〉] ≤ TCZ2,n(S
d) = n+ 1.

From (3) we have TCn(S
d) ≤ TCn[p : X(Sd, N) → N/ 〈σ〉]. Therefore, if d is

even, we have TCn[p : X(Sd, N) → N/ 〈σ〉] = n + 1. If d is odd, then TCn[p :
X(Sd, N) → N/ 〈σ〉] ∈ {n, n+ 1}.

Example 2.5. In [36], Milnor introduced a class of submanifolds of the products
of real and complex projective spaces to define generators for the unoriented cobor-
dism algebra. We define these manifolds as follows: Let r and s be integers such
that 0 ≤ s ≤ r. A real Milnor manifold, denoted by RMr,s, is the submanifold of
the product RP r × RP s of real projective spaces. It is defined as follows:

RMr,s :=
{(

[x0 : · · · : xr], [y0 : · · · : ys]
)
∈ RP r × RP s | x0y0 + · · ·+ xsys = 0

}
.

The real Milnor manifold RMr,s is an (s + r − 1)-dimensional closed, smooth
manifold. There is a fibre bundle:

RP r−1 i
↪→ RMr,s

p−→ RP s. (6)

A complex Milnor manifold, denoted by CMr,s, can be defined in a similar manner:

CMr,s :=
{(

[z0 : · · · : zr], [w0 : · · · : ws]
)
∈ CP r × CP s | z0w0 + · · ·+ zsws = 0

}
.

Note that CMr,s is a closed, smooth manifold of dimension 2(s+ r− 1). Just as in
the real case, CMr,s is the total space of the fiber bundle:

CP r−1 i
↪→ CMr,s

q−→ CP s. (7)

The author and B. Singh [16] studied sequential topological complexity of RMr,s

and CMr,s, obtaining several sharp bounds and computing exact values in various
cases.

Note that, using (3) and [23, proposition 6.1], we obtain

TCn(RP r−1) ≤ TCn[p : RMr,s −→ RP s] ≤ n(r − 1) + s+ 1.

The topological complexity of projective spaces has been studied in [26] and the
corresponding sequential analogue is discussed in [6].

If r = 2m+1, then it is known that TCn(RP r−1) = n(r−1). Thus, for r = 2m+1,
we have

n(r − 1) ≤ TCn[p : RMr,s −→ RP s] ≤ n(r − 1) + s+ 1.

Since CMr,s is simply connected, applying theorem 2.3 gives us

TCn[q : CMr,s −→ CP s] ≤ n(r − 1) + s+ 1.
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Since TCn(CP r−1) = n(r − 1) + 1, using (10) we obtain

n(r − 1) + 1 = TCn(CP r−1) ≤ TCn[q : CMr,s −→ CP s].

Thus, if s =1, then

n(r − 1) + 1 ≤ TCn[CMr,s
q−→ CP 1] ≤ n(r − 1) + 2.

3. Equivariant sectional category

The sectional category of a Hurewicz fibration was introduced by Švarc in [42].
Colman and Grant [12] generalized this notion and introduced the equivariant sec-
tional category. Let G be a compact Lie group and E,B be G-spaces such that
p : E → B is a G-map. The symbol 'G denotes the G-homotopy equivalence. In
this paper, when we refer to a group G, we mean a compact Lie group.

Definition 3.1 ([12, definition 4.1]). Let p : E → B be a G-map. The equivariant
sectional category of p, denoted by secatG(p), is the least positive integer k such
that there is a G-invariant open cover {U1, . . . , Uk} of B and G-maps si : Ui → E
for i = 1, . . . , k, such that p ◦ si 'G iUi

, where iUi
: Ui ↪→ B is the inclusion map.

If no such k exists, we say secatG(p) = ∞. If G is a trivial group, then secatG(p)
is called the sectional category of p, denoted by secat(p).

Fadell [19] introduced the notion of G-equivariant LS-category for G-spaces, and
it was later studied by Marzantowicz in [35], Clapp and Puppe in [7], Colman [11],
and Angel, Colman, Grant, and Oprea in [1]. This homotopy invariant of a G-space
X is denoted by catG(X). Before defining this notion, we recall the notion of G-
categorical sets. An invariant open set U of a G-space X is called G-categorical if
the inclusion iU : U ↪→ X is G-homotopic to the map that takes values in a single
orbit.

Definition 3.2. For a G-space X, the G-equivariant category catG(X) is defined
as the least positive integer r such that X can be covered by r G-categorical sets.

Let H be a closed subgroup of G and X be a G-space. The H -fixed point set of
X is denoted by XH and defined as

XH := {x ∈ X | hx = xfor all h ∈ H}.

Definition 3.3. A G-space X is said to be G-connected if, for any closed subgroup
H of G, the H-fixed point set XH is path-connected.

It can be observed that if x ∈ X is fixed point of a G-action and if X is a G-
connected space, then for the inclusion map i : {x} → X, secatG(i : {x} → X) =
catG(X); see [12, corollary 4.7]. Additionally, ifG is trivial, then catG(X) = cat(X).

We now recall the notion of sequential (higher) equivariant topological complex-
ity introduced by Bayeh and Sarkar in [3]. This notion generalizes the equivariant
topological complexity introduced by Colman and Grant in [12].
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Let X be a G-space. Observe that the path space admits G-action via (g ·γ)(t) :=
g · γ(t). The product Xn is also a G-space with the diagonal G-action. One can
check that the fibration (1) is a G-fibration.

Definition 3.4. Let X be a G-space. The sequential equivariant topological com-
plexity is denoted by TCG,n(X) is the least positive integer k such that the space
Xn is covered by k-many G-invariant open sets with each of which having an
G-equivariant section of πn. In other words, TCG,n(X) = secatG(πn).

In the next section, we introduce sequential equivariant parametrized topological
complexity, a special case of which is sequential equivariant topological complexity.

Several results from [12] are generalized by Bayeh and Sarkar in [3]. The following
result is a sequential analogue of [12, corollary 5.8]. We couldn’t find this result in
Bayeh and Sarkar’s paper [3]. Since the proof is fairly straightforward, we only
include the statement.

Proposition 3.5. Let X be a G-space and H be a stabilizer of some a ∈ X. Then

catH(Xn−1) ≤ TCG,n(X).

The following result is also missed out in [3], which is a sequential analogue of
[12, proposition 5.12]. Since the proof is almost identical to that of [12, proposition
5.12], we omit it here.

Proposition 3.6. Let A be a topological group and G acts on A via topological
group homomorphisms such that A is G-connected. Then TCG,n(A) = catG(A

n−1).

4. Equivariant parametrized topological complexity

This section introduces the concept of sequential equivariant parametrized topo-
logical complexity and examines its properties. We define fibrewise G-homotopy
equivalent fibrations and prove one of the important results of this section which
states that the sequential G-equivariant parametrized topological complexity of
fibrewise G-homotopy equivalent fibrations coincides. Then, we obtain various
bounds on sequential equivariant parametrized topological complexity, which gen-
eralize bounds on the equivariant topological complexity obtained by Colman and
Grant in [12].

Let p : E → B be a G-fibration, and let En
B be the corresponding fibre product.

Define a G-action on En
B as g · (e1, . . . , en) = (ge1, . . . , gen). Since p is G-map,

we have p(gei) = gp(gi) = gp(ej) = p(gej). Thus, this action is well-defined. The
G-action on EI

B is defined as follows. Let γ ∈ EI
B . Then define (g · γ)(t) = gγ(t).

Note that p(g · γ) = gp(γ) and since p(γ) is constant, p(g · γ) is also constant.
Therefore, EI

B also admits a G-action. Observe that for g ∈ G we have:

Πn(gγ) =

(
gγ(0), gγ

(
1

n− 1

)
, . . . , gγ

(
n− 2

n− 1

)
, gγ(1)

)
= g ·

(
γ(0), γ

(
1

n− 1

)
, . . . , γ

(
n− 2

n− 1

)
, γ(1)

)
= g ·Πn(γ).
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Thus, Πn is G-equivariant.

Definition 4.1. The sequential equivariant parametrized topological complexity of
a G-fibration p : E → B, denoted by TCG,n[p : E → B], is defined as

TCG,n[p : E → B] := secatG(Πn : EI
B → En

B).

We recall that Colman and Grant observed in [12] that the fibration πn is a
G-fibration (also it follows from [30, proposition 2.5]). This can be proved using
an equivariant analogue of [40, theorem 2.8.2]. Cohen, Farber and Weinberger
[8, Appendix] have shown that the map Πn is a fibration. We want to prove an
equivariant analogue of their result.

In [31], an equivariant analogue of lifting function was defined and equivariant
analogue of [40, theorem 2.7.8] was proved (see [31, § 2.1 and proposition 2.1.3]).
We also refer the reader to [30, 32, 43 § 2].

Let p : E → B be a G-fibration. Let X be a topological space with a trivial G-
action. Consider the space EX

B = {f : X → E | p ◦ f is constant} with the compact
open topology, on which the G-action is defined as (gf)(x) = g(f(x)). Let (K,L) be
a pair of CW-complexes with trivial G-action, and Π : EK

B → EL
B be the restriction

map defined by Π(f) = f |L. Note that Π is a G map.

Proposition 4.2. The map Π is a G-fibration.

Proof. Since p : E → B is a G-fibration, it follow that (see [31, proposition 2.1.3] or
[30, lemma 2.2]), there exist a G-lifting function λ : B̄ → EI , where B̄ = {(e, γ) ∈
E × BI | p(e) = γ(0)}, such that p ◦ λ(e, γ) = γ and λ(e, γ)(0) = e. Consider the
trivial action of G on L× I. An element h of (EL

B)
I can be considered as a map

h : L × I → E such that for any t ∈ I, the image h(L × {t}) ⊆ E lies in a single
fibre of p. Note that, we need to construct a G-lifting function Λ : ĒL

B → (EK
B )I

for Π, where

ĒL
B = {(f, h) ∈ EK

B × (EL
B)

I | f(x) = h(x, 0)for allx ∈ L}.

That is, Λ should satisfy the conditions: Λ(f, h)(x, t) = h(x, t) for all x ∈ L and
t ∈ I, and Λ(f, h)(x, 0) = f(x) for x ∈ K. Note that ĒL

B has the diagonal G-action.
Let h ∈ (EL

B)
I . Define a path ωh in B by ωh(t) = p◦h(x, t) for x ∈ L. Now define

Λ̃ : ĒL
B → (EK

B )I by Λ̃(f, h)(x, t) = λ(f(x), ωh)(t). Note that for g ∈ G, we have

Λ̃(gf, gh)(x, t) = λ(gf(x), ωgh)(t) = λ(gf(x), gωh)(t) = gλ(f(x), ωh)(t). Thus, Λ̃ is

a G-map. Observe that, Λ̃(f, h)(x, 0) = f(x) for x ∈ K. Thus Λ̃ satisfies the second
condition of a G-lifting function. However, the condition Λ̃(f, h)(x, t) = h(x, t) for
all x ∈ L is not guaranteed. Thus, we need a modification to Λ̃.

Define αh : L× I × I → E by

αh(x, τ, t) =

h(x, t), 0 ≤ t ≤ τ,

λ(h(x, τ), ω
[τ,1]
h ( t−τ

1−τ )), τ ≤ t ≤ 1,
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where ω
[τ,1]
h is a path defined by ω

[τ,1]
h (s) = ωh(τ +(1−τ)s) for s ∈ I. Note that for

x ∈ L, we have p ◦αh(x, τ, t) = ωh(t), αh(x, 0, t) = λ(h(x, 0), ωh)(t) = Λ̃(f, h)(x, t),
and αh(x, 1, t) = h(x, t).

We will now define

Λ : ĒL
B → (EK

B )I by Λ(f, h)(x, t) = (Λ̃(f, h) ∪ αh)(ρ(x, 1), t),

where ρ : K × I → K ×{0} ∪L× I is a retraction. Here we have treated Λ̃(f, g) as
a function from K × {0} × I → E. Since for g ∈ G, we have gαh = αgh and Λ̃ is a
G-map, we conclude that Λ is a G-map. One can check that Λ(f, h)(x, t) = h(x, t)
for all x ∈ L and Λ(f, h)(x, 0) = f(x) for x ∈ K. Thus, Λ is a G-lifting function
for Π. �

Corollary 4.3. The G-map Πn : EI
B → En

B is a G-fibration.

Proof. The proof follows from proposition 4.2, by considering K = I as a CW-
complex with its subcomplex L = {0, 1

n−1 , . . . ,
n−2
n−1 , 1}. �

The following proposition is a straightforward application of definition 4.1.

Proposition 4.4.

(1) Let p : E → B be a fibration, and let G act trivially on E and B. Then
TCG,n[p : E → B] = TCn[p : E → B].

(2) If B = {∗}, then TCG,n[p : E → B] = TCG,n(E).
(3) Suppose a G-fibration p : E → B is trivial. Then TCG,n[p : E → B] =

TCG,n(F ).

Proof. Parts (1) and (2) are obvious. We prove part (3) here. Let F and B be
G-spaces and let p : F × B(= E) → B be a trivial G-fibration. Then we have
En

B = Fn×B, EI
B = F I×B and Πn : EI

B → En
B becomes πn×id : F I×B → Fn×B.

It is easy to see that secatG(πn × id) = secatG(πn). Thus we have

TCG,n[p : F ×B → B] = TCG,n(F ). (8)

�

Remark 4.5. Note that if G acts trivially on F and B, then the conclusion of (8)
follows from [23, example 3.2] and the n =2 case from [8, example 4.2].

In the following result, we establish an equivariant analogue of [14, lemma 2.4].
We also show that if the fixed point set of base space of a G-fibration is non-empty,
then the sequential equivariant topological complexity of fibre is dominated by the
sequential equivariant parametrized topological complexity.
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Proposition 4.6. Let p : E → B be a G-fibration and let p̃ : Ẽ → B̃ be a pullback
fibration corresponding to a G-map B̃ → B. Then,

TCG,n[p̃ : Ẽ → B̃] ≤ TCG,n[p : E → B]. (9)

Moreover, if EG 6= ∅, then F admits G-action and

TCG,n(F ) ≤ TCG,n[p : E → B]. (10)

Proof. We consider the diagram of a pullback of G-fibrations

Note that f
′
induces a G-map f̃ ′ : Ẽn

B̃
→ En

B defined by f̃ ′(e1, . . . , en) =

(f ′(e1), . . . , f
′(en)). The map f̃ ′ is well defined because of the commutativity of the

above diagram. One can observe that the pullback of theG-fibration Πn : EI
B → En

B

along f̃ ′ is isomorphic as a G-fibration to Π̃n : ẼI
B̃
→ Ẽn

B̃
. Thus,

TCG,n[p̃ : Ẽ → B̃] = secatG(Π̃n) ≤ secatG(Πn) = TCG,n[p : E → B].

Since EG 6= ∅, we have BG 6= ∅. Then it is easy to see that, for e ∈ EG, the
fibre F := p−1(p(e)) admits a G-action. Then (10) follows from (9) by taking the
pullback along the inclusion {b} ↪→ B. �

In the following result, we show that, under certain conditions, having a contin-
uous G-equivariant parametrized motion planning algorithm for a G-fibration is
equivalent to the fibre being G-contractible.

Proposition 4.7. Let p : E → B be a G-fibration with TCG,n[p : E → B] = 1.
Suppose there exists e ∈ EG 6= ∅ such that fibre F := p−1(p(e)) is G-connected.
Then F is G-contractible. Conversely, if F is G-contractible and En

B is a G-CW-
complex, then TCG,n[p : E → B] = 1.

Proof. We have TCG,n(F ) = 1 from (10). Then, from proposition 3.5, we get that
catG(F

n−1) = 1. This forces catG(F ) = 1. That is, F is G-contractible.
Note that the fibre of Πn is (ΩF )n−1. Since e ∈ EG 6= ∅, the space (ΩF )n−1

is admits a G-action. Additionally, (ΩF )n−1 is G-contractible because F is G-
contractible. Then, from the equivariant obstruction theory, there exist a continuous
section of Πn : EI

B → En
B . This proves the converse. �

In [41], tom Dieck introduced the notion of principal (G,α,A)-bundles, where
G and A are topological groups and G acts on A via a continuous homomorphism
α : G → Aut(A). For more details, see [37]. We now define these bundles.
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Definition 4.8 ([37, definition 1.1]). Let E and B be left G-spaces. A locally
trivial principal A-bundle p : E → B is called a principal (G,α,A)-bundle if p is
G-equivariant and g(x · a) = gx · ga for every g ∈ G, a ∈ A and x ∈ E.

For such bundles we establish a relation between sequential equivariant
parametrized topological complexity and the G-equivariant category of An−1. We
observe that the latter coincides with the sequential G-equivariant topological
complexity of A. The following result generalizes [23, proposition 3.3].

Theorem 4.9 Let p : E → B be a principal (G,α,A)-bundle such that A is G-
connected. Then,

TCG,n[p : E → B] = catG(A
n−1) = TCG,n(A).

Proof. Note that G acts on A via a continuous homomorphism α : G → Aut(A).
Therefore, for the identity e ∈ A, we have g·e = α(g)(e) = e. Thus, e is a fixed point
of the G-action on A. This allows the path space P0(A) = {γ ∈ AI | γ(0) = e}
to admit a G-action. Moreover, we have assumed that A is G-connected. Thus,
it follows from [12, corollary 4.7] that secatG(q : P0(A) → An−1) = catG(A

n−1),
where q is a G-map defined by q(γ) := (γ( 1

n−1 ), . . . , γ(
n−2
n−1 ), γ(1)).

We now use a similar idea which was used in [23, proposition 3.3]. Consider the
following commutative diagram:

where F and F
′
are defined such that

F (γ, x)(t) = x · γ(t)and F ′(a1, . . . , an−1, x) = (x, x · a1, . . . , x · an−1), respectively.

Note that F and F
′
are homeomorphisms. We will verify that they are indeed G-

maps. Let g ∈ G. Then we have F (gγ, gx)(t) = gx ·gγ(t) = g(x ·γ(t)) = gF (γ, x)(t)
and

F ′(ga1, . . . , gan−1, gx) = (gx, gx · ga1, . . . , gx · gan−1)

= (gx, g(x · a1), . . . , g(x · an−1))

= g(x, x · a1, . . . , x · an−1)

= gF ′(a1, . . . , an−1, x).

Thus, F and F
′
are G-equivariant homeomorphisms. Consequently, we get

TCG,n[p : E → B] = secatG(Πn) = secatG(q × id) = secatG(q) = catG(A
n−1).

The equality catG(A
n−1) = TCG,n(A) follows from proposition 3.6. �
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4.1. Fibrewise G-homotopy invariance

This subsection aims to achieve a fibrewise G-homotopy invariance of G-equivariant
parametrized topological complexity. We begin by proving a lemma which plays a
crucial role in showing that the sequential G-equivariant parametrized topological
complexity of fibrewise G-homotopy equivalent fibrations coincide.

Lemma 4.10.

(1) Suppose p : E → B and p′ : E′ → B are G-fibrations. If there is a continuous
G-map f : E → E′ which fits into the following commutative diagram

then secatG(p
′) ≤ secatG(p).

(2) Suppose we have the following commutative diagram of G-maps:

where p : E → B and p′ : E′ → B′ are G-fibrations. Suppose f ′◦f 'G idB.
Then

secatG(p) ≤ secatG(p
′).

Proof. For (1), consider a G-invariant open set U of B with a G-section sU of p.
Note that f ◦ sU is a G-map, and due to the commutativity of the above diagram,
it defines a G-section of p

′
. Thus, we get the desired inequality in (1).

For (2), consider the pullback fibration q : B ×B′ E′ → B of a G-fibration
p′ : E′ → B′ along f : B → B′. Then, from [12, proposition 4.3], we have:

secatG(q) ≤ secatG(p
′). (11)

Let F̃ = F ′ ◦ q′, where q′ : B ×B′ E′ → E′ be the projection onto the second
factor. Then, we have p◦F̃ ((b, x)) = p◦F ′◦q′((b, x)) = f ′◦p′(x). Since p′(x) = f(b),
it follows that p ◦ F̃ ((b, x)) = f ′ ◦ f ◦ q(b, x). In other words, p ◦ F̃ = f ′ ◦ f ◦ q. Since
f ′ ◦ f 'G idB , we have p ◦ F̃ 'G q. Note that we have the following G-homotopy
commutative diagram:
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Now consider a G-homotopy Ht : B → B such that H0 = f ′ ◦ f and H1 = idB .
Using the G-homotopy lifting property, we obtain a G-homotopy Jt : B×B′E′ → E
such J0 = F̃ , p ◦ Jt = Ht ◦ q and p ◦ J1 = q. Thus, from part (1), we get that
secatG(p) ≤ secatG(q). We can now conclude the proof using (11). �

We need the following definitions before introducing the equivariant analogue of
fibrewise homotopy equivalent fibrations.

Definition 4.11. Let p : E → B and q : E′ → B be G-fibrations. A fibrewise
G-map from p : E → B to q : E′ → B is a G-map f : E → E′ such that q ◦ f = p.

Definition 4.12. A fibrewise G-homotopy F : E × I → E′ is a G-map such that
q(F (−, t)) = p for all t ∈ I. Thus, F is a G-homotopy between fibrewise G-maps
F (−, 0) and F (−, 1).

Definition 4.13. Let p : E → B and q : E′ → B be G-fibrations. Then p and
q are said to be fibrewise G-homotopy equivalent if there exist fibrewise G-maps
f : E → E′ and g : E′ → E such that there are fibrewise G-homotopies from f ◦ g
to IdE′ and from g ◦ f to IdE.

Farber and Paul [23] show that the sequential parametrized topological com-
plexity of fibrewise homotopy equivalent fibrations coincides. We now prove the
equivariant analogue of their result.

Proposition 4.14. Suppose the G-fibrations p : E → B and p : E′ → B are
fibrewise G-homotopy equivalent. Then

TCG,n[p : E → B] = TCG,n[p
′ : E′ → B].

Proof. The commutative diagram of G-maps given in the hypothesis induces the
following two commutative diagrams of G-maps:

where F I(γ)(t) = F (γ(t)) and F ′I defined similarly. Since f ′ ◦ f and f ◦ f ′ are
fibrewise G-homotopic to the identity maps idE and idE′ , respectively, we have
f ′n ◦ fn 'G idEn

B
and fn ◦ f ′n 'G idE′n

B
. Thus, we obtain the desired equality

using part (2) of lemma 4.10. �
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4.2. Bounds

In this subsection, we obtain various bounds on the sequential equivariant
parametrized topological complexity. We note that the results in this subsection
generalize the classical results of Farber [22, 38] when we consider the trivial action
of the group G, and the results of Colman-Grant [12] and Bayeh-Sarkar [3] when
we consider the base space B to be a singleton.

We now establish the upper bound on the sequential equivariant parametrized
topological complexity in terms of the equivariant category, and consequently, in
terms of the dimension of the fibre product.

Proposition 4.15. Let p : E → B be a G-fibration with EG 6= ∅ and En
B is

G-connected . Then

TCG,n[p : E → B] ≤ catG(E
n
B) ≤ dim(En

B/G) + 1. (12)

Moreover, if G acts locally smoothly on E and F is the fibre of a smooth fibre bundle
p : E → B, then

TCG,n[p : E → B] ≤ ndim(F ) + dim(B)− dim(P ) + 1, (13)

where P is the principal orbit (an orbit of maximal dimension) of the G-action on
En

B.

Proof. One can observe that, since EG 6= ∅, we have (En
B)

G 6= ∅. Consequently,
(EI

B)
G 6= ∅. Moreover, En

B is G-connected, thus the first inequality of (12) follows
from [12, proposition 4.4]. The right-most inequality of (12) follows from [35, corol-
lary 1.12]. It follows from [5, theorem IV.3.8] that dim(En

B/G) = dim(En
B)−dim(P ).

Then, the inequality in (13) follows from the fact that dim(En
B) ≤ ndim(F ) +

dim(B). �

Corollary 4.16. Suppose E admits a locally smooth, non-trivial and semi-free
action of G, with p : E → B being a G-fibration such that EG 6= ∅ and En

B is
G-connected. Then

TCG,n[p : E → B] ≤ ndim(F ) + dim(B)− dim(G) + 1. (14)

Proof. It follows that if the action is locally smooth, non-trivial, and semi-free,
then the principal orbit’s dimension coincides with the group’s dimension. Thus,
the conclusion follows from proposition 4.15. �

Remark 4.17. Consider p : E → B a G-fibration. When B = {∗}, the inequality
(14) also appears in [16, proposition 3.1]. Since TCn(X) ≤ TCG,n(X), we can
conclude that the inequality (14) generalizes [13, corollary 4.7].

Proposition 4.18. Let p : E → B be a G-fibration such that the fibre of p|EH :
EH → BH is path connected for all closed subgroups H of G and let En

B be G-
connected. Then

TCG,n[p : E → B] ≤ catG(E
n
B).
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Proof. Since p|EH : EH → BH is path connected for all closed subgroups H of
G, the map Πn|(EI

B
)H

: (EI
B)

H → (En
B)

H is surjective. Therefore, the conclusion

follows from [12, proposition 4.5]. �

Proposition 4.19. Let p : E → B be a G-fibration. If E is G-contractible space,
then

catG(E
n
B) ≤ TCn[p : E → B].

Proof. Let x ∈ E and γx be a constant path at x. Then define h : E → EI
B by

h(x) = γx. Observe that h is a G-map since h(gx) = γgx = g · γx = g · h(x).
Notice that h has a G-homotopy inverse h

′
, which sends a path to its initial point.

This implies, E 'G EI
B . This implies EI

B is a G-contractible space. Therefore, we
can apply [12, proposition 4.6] to the fibration Πn : EI

B → En
B to get the desired

result. �

Now, the following result is clear.

Corollary 4.20. Let p : E → B be a G-fibration and let E be a G-contractible
space. If En

B is G-connected and EG 6= ∅, then

TCn[p : E → B] = catG(E
n
B).

Theorem 4.21 Let p : E → B be a G fibration. Let H and K be any closed
subgroups of G such that EH is K-invariant. Then

TCK,n[p : EH → BH ] ≤ TCG,n[p : E → B].

Proof. Let U be a G-invariant open set of En
B on which we have a local G-section

s of Πn : EI
B → En

B . Let V = U ∩ (EH)nB . Then, observe that V is K -invariant.
Note that for x ∈ (EH)nB , we have hs(x) = s(hx) = s(x). Therefore, s(x) ∈ (EI

B)
H .

But (EI
B)

H = (EH)I
BH . Thus, s restricts to V. Therefore, we have a K -section

s|V : V → (EH)IB . This concludes the result. �

The following is an obvious consequence of theorem 4.21.

Corollary 4.22. Let p : E → B be a G-fibration. Then for any closed subgroups
H and K of G we have:

(1) TCn[p|EH : EH → BH ] ≤ TCG,n[p : E → B],
(2) TCK,n[p : E → B] ≤ TCG,n[p : E → B].

Remark 4.23. If B is a singleton, then theorem 4.21 generalizes [12, proposition
5.3] and [3, proposition 3.14].

In the following result, we establish the relation between sequential equivariant
parametrized topological complexity of a G-fibration and the equivariant category
of its fibre and the equivariant category of the corresponding fibre product. The
proof is inspired by [12, proposition 5.7].
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Theorem 4.24 Let p : E → B be a G-fibration such that En
B is G-connected, and

let H be a stabilizer of some e ∈ E. Then,

catH(Fn−1) ≤ TCG,n[p : E → B] ≤ catG(E
n
B).

In particular, if EG 6= ∅, then

catG(F
n−1) ≤ TCG,n[p : E → B] ≤ catG(E

n
B).

Proof. Let e ∈ E and b = p(e). We consider F = p−1(b). Note that b ∈ BH .
Therefore, F admits an H -action. We now define a map f : Fn−1 → En

B by
f(x1, . . . , xn−1) = (e, x1, . . . , xn−1). Note that f is a well-defined H -equivariant
map. Now consider the following pullback diagram:

where Y = {γ ∈ EI
B | γ(0) = e}. Note that Y is H -invariant and H -contractible.

Therefore, catH(Fn−1) ≤ secatH(q). From [12, proposition 4.3], we have:

secatH(q) ≤ secatH(Πn) = TCH,n[p : E → B].

Now from corollary 4.22, we have TCH,n[p : E → B] ≤ TCG,n[p : E → B]. This
proves the desired inequality. �

We will now obtain the cohomological lower bound on the equivariant
parametrized topological complexity. Let X be a G-space, and Xh

G = EG ×G X
be the homotopy orbit space of X. The Borel G-equivariant cohomology of X is
defined as H∗

G(X;R) := H∗(Xh
G;R), where R is any commutative ring.

Let p : E → B be a G-fibration and En
B be the corresponding fibre product.

Note that the diagonal map 4 : E → En
B is G-equivariant. Therefore, it induces a

map 4G : Eh
G → (En

B)
h
G.

Theorem 4.25 Let 4∗
G : H∗

G(E
n
B) → H∗

G(E) be the induced map from 4G : Eh
G →

(En
B)

h
G. Suppose there exists cohomology classes ui ∈ ker(4∗

G) for 1 ≤ i ≤ r such
that u1 ∪ · · · ∪ ur 6= 0. Then

TCG,n[p : E → B] > r.

Proof. Consider the following commutative diagram:
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where h is a G-homotopy equivalence. Suppose TCG,n[p : E → B] ≤ r. Consider
a parametrized motion planning cover {U1, . . . , Ur}. Since h is G-homotopy equiv-
alence, the inclusion iUi

: Ui → En
B factors through the diagonal 4 : E → En

B

up to G-homotopy. Therefore, i∗Ui
(ui) = 0 for 1 ≤ i ≤ r. Hence ui’s are in the

image of H∗
G(E

n
B , Ui) → H∗

G(E
n
B) for 1 ≤ i ≤ r. Since Ui covers En

B , we get that
u1 ∪ · · · ∪ ur = 0 by the naturality of cup products. This completes the proof. �

The upper bound on the equivariant sectional category of Serre G-fibrations has
obtained in [30, theorem 3.5]. We now state this result with a slight modification.

Theorem 4.26 ([30, theorem 3.5]). Let p : E → B be a Serre G-fibration and let
B be a G-CW complex with dim(B) ≥ 2. Suppose for all closed subgroups H of G,
the fibre of pH : EH → BH is (m− 1)-connected. Then

secatG(p) <
dim(B) + 1

m+ 1
+ 1.

We will now use theorem 4.26 to establish the upper bound on the equivariant
parametrized topological complexity.

Theorem 4.27 Let p : E → B be a (Hurewicz) G-fibration and En
B is a G-CW

complex with dim(En
B) ≥ 2. Suppose for all subgroups H of G, the fibre of pH :

EH → BH is m-connected. Then

TCG,n[p : E → B] <
ndim(F ) + dim(B) + 1

m+ 1
+ 1.

Proof. Since Πn : EI
B → En

B is a (Hurewicz) G-fibration, it is also a Serre G-
fibration. We can observe that (EI

B)
H = (EH)I

BH and (En
B)

H = (EH)n
BH for any

closed subgroup H of G. Thus, the fibration (Πn)
H : (EI

B)
H → (En

B)
H is, in fact,

a sequential parametrized path fibration associated with the fibration pH : EH →
BH . In other words, we have (Πn)

H : (EH)I
BH → (EH)n

BH . Let XH denote the fibre

of pH : EH → BH . Then, note that the fibre of (Πn)
H is (ΩXH)n−1. Since XH is m-

connected and πi((ΩXH)n−1) = (πi(ΩXH))n−1 = (πi+1(XH))n−1, it follows that
(ΩXH)n−1 is (m− 1)-connected. Then from theorem 4.26, we obtain the following
inequality:

TCG,n[p : E → B] <
dim(En

B) + 1

m+ 1
+ 1. (15)

It is well known that there is a locally trivial fibration En
B → B with fibre Fn .

Therefore, we have dim(En
B) ≤ ndim(F ) + dim(B). This completes the proof. �
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5. Examples

5.1. Equivariant Fadell–Neuwirth fibrations

In this subsection, we compute sequential equivariant parametrized topological
complexity of Fadell–Neuwirth fibrations.

We start with recalling the definition of the ordered configuration space. The
ordered configuration space of s points on Rd is denoted by F (Rd, s) and defined
as

F (Rd, s) = {(x1, . . . , xs) ∈ (Rd)s | xi 6= xjfor i 6= j}.

Definition 5.1 ([20]). The maps

p : F (Rd, s+ t) → F (Rd, s) defined by p(x1, . . . , xs+t) = (x1, . . . , xs)

are called Fadell–Neuwirth fibrations.

The sequential parametrized topological complexity of these fibrations have been
computed in [23] for odd d ≥ 3 and in [24] for even d ≥ 2. We now state their
theorem.

Theorem 5.2 ([24, theorem 1.3]). Let d ≥ 2 be an even integer, and t ≥ 1, s ≥ 2.
Then

TCn[p : F (Rd, s+ t) → F (Rd, s)] = nt+ s− 1.

Theorem 5.3 ([23, theorem 8.1]). Let d ≥ 3 be an odd integer, and s ≥ 2, t ≥ 1.
Then

TCn[p : F (Rd, s+ t) → F (Rd, s)] = nt+ s.

We now define an action of a permutation group Σs (on s letters) on F (Rd, s+t).
Let σ ∈ Σs. Define

σ · (x1, . . . , xs, y1, . . . , yt) = (xσ(1), . . . , xσ(s), y1, . . . , yt).

Also Σs acts on F (Rd, s) by permuting coordinates. Observe that the map p in
definition 5.1 satisfies

p((xσ(1), . . . , xσ(s), y1, . . . , yt)) = (xσ(1), . . . , xσ(s)) = σ · p((x1, . . . , xs, y1, . . . , yt)).

Thus, p is a Σs-equivariant map. We now show that p is indeed a Σs-fibration.
The local triviality of p was shown in [21, theorem 1.1], and we also refer the

reader to [10, theorem 3.3]. We will use the ideas from these results to show the
Σs-equivariant local triviality of p. Consider a point q = (q1, . . . , qs) ∈ F (Rd, s)
and mutually disjoint open discs Di with centres qi. Then consider the open set
V = ∪σ∈ΣsDσ(1) × · · · ×Dσ(s) containing q. Note that V is Σs-invariant and a dis-

joint union. Note that the fibre Fq of p at q is given by F (Rd \ {q1, . . . , qs}, t).
We identify Fq with the last t-coordinates of F (Rd, s + t) via (y1, . . . , yt) 7→
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(q1, . . . , qs, y1, . . . , yt) and assume that Σs acts trivially on Fq. We define a homeo-
morphism Φq : V ×Fq → p−1(V ) in a similar way as it was defined in [21, theorem
1.1]. We fix the notation ȳ = (y1, . . . , yt). Let x̄ = (x1, . . . , xs) ∈ V . That means
x̄ ∈ Dσ(1) × · · · ×Dσ(s) for some σ ∈ Σs. Define

Φq(x1, . . . , xs, ȳ) =
(
x1, . . . , xs,

(
γ−1
σ(1)(x1) ◦ · · · ◦ γ−1

σ(s)(xs)
)
(ȳ)

)
,

where functions γi(xi) : Rd → Rd are homeomorphisms defined as in the [21,
corollary 1.1] for 1 ≤ i ≤ s and we have denoted (γi(x))

−1 by γ−1
i (x). Recall that

these functions have the following properties: for x ∈ Di, we have γi(x)(Di) = Di,
γi(x)(x) = qi, and γi(x)(y) = y for y ∈ Rd \Di. Note that

(γ−1
1 (x1) ◦ · · · ◦ γ−1

s (xs))(ȳ) = ((γ−1
1 (x1) ◦ · · · ◦ γ−1

s (xs))(y1), . . . ,

× (γ−1
1 (x1) ◦ · · · ◦ γ−1

s (xs))(yt)).

For (x1, . . . , xs) ∈ D1 × · · · ×Ds, we note the important observation:

(γ−1
1 (x1) ◦ · · · ◦ γ−1

s (xs))(yi) =

γ−1
j (xj)(yi), if yi ∈ Dj ,

yi, otherwise.
(16)

We will now prove that Φq is Σs-equivariant. Let x̄ ∈ Dσ(1)×· · ·×Dσ(s) and ρ ∈ Σs.
Note that ρ · x̄ ∈ Dσ(ρ(1)) × · · · ×Dσ(ρ(s)). Then we have

Φq(ρ · x̄, ȳ) = (ρ · x̄, (γ−1
σ(ρ(1))(xρ(1)) ◦ · · · ◦ γ−1

σ(ρ(s))(xρ(s)))(ȳ)).

Observe that the sets {γ−1
σ(r)(xr) | 1 ≤ r ≤ s} and {γ−1

σ(ρ(r))(xρ(r)) | 1 ≤ r ≤ s}
coincides. Then using (16) we can see that

(γ−1
σ(ρ(1))(xρ(1)) ◦ · · · ◦ γ−1

σ(ρ(s))(xρ(s)))(yi) = (γ−1
σ(1)(x1) ◦ · · · ◦ γ−1

σ(s)(xs))(yi).

More precisely, if yi ∈ Dj for some 1 ≤ j ≤ s and σ(k) = j, then we have

(γ−1
σ(1)(x1) ◦ · · · ◦ γ−1

σ(s)(xs))(yi) = γ−1
σ(k)(xk)(yi).

Moreover, if σ(ρ(r)) = j, then

(γ−1
σ(ρ(1))(xρ(1)) ◦ · · · ◦ γ−1

σ(ρ(s))(xρ(s)))(yi) = γ−1
σ(ρ(r))(xρ(r))(yi).

Since ρ(r) = k, we get γ−1
σ(k)(xk)(yi) = γ−1

σ(ρ(r))(xρ(r))(yi). This gives us,

Φq(ρ · x̄, ȳ) = (ρ · x̄, (γ−1
σ(1)(x1) ◦ · · · ◦ γ−1

σ(s)(xs))(ȳ))

= ρ · (x̄, (γ−1
σ(1)(x1) ◦ · · · ◦ γ−1

σ(s)(xs))(ȳ)).

This proves that Φq is Σs-equivariant.
Let F = F (Rd \ {a1, . . . , as}, t) be the fibre of p with (a1, . . . , as) ∈ F (Rd, s) as

chosen base point. We will now choose a stable homeomorphism (as in step-2 of [21,
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theorem 1.1]) αq : F → Fq and define Φ = Φq ◦ (idV ×αq). Note that αq is equivari-
ant as Σs acts trivially on both F and Fq. We conclude that Φ : V × F → p−1(V )
is Σs-equivariant local trivialization. Finally, using [32, theorem 2.3], we conclude
that the fibration p is a G-fibration.

We are going to use theorem 4.27 to obtain an upper bound on TCΣs,n[p :
F (Rd, s + t) → F (Rd, s)]. We denote the fibration p : F (Rd, s + t) → F (Rd, s) by
p : E → B. Note that F is (d − 2)-connected. Since any closed subgroup H of Σs

acts freely on E and B, we only need to consider pH : EH → BH when H is the
trivial subgroup. In this case, pH = p. Then from theorem 4.27, we get the following
expression.

TCΣs,n[p : E → B] <
(d− 1)(nt+ s− 1) + 1

d− 1
+ 1 = nt+ s+ 1/(d− 1).

This gives us

TCΣs,n[p : F (Rd, s+ t) → F (Rd, s)] ≤ nt+ s.

Since we have

TCn[p : F (Rd, s+ t) → F (Rd, s)] ≤ TCΣs,n[p : F (Rd, s+ t) → F (Rd, s)],

we establish the following result.

Theorem 5.4

(1) Let d ≥ 3 be an odd integer, and s ≥ 2, t ≥ 1. Then

TCΣs,n[p : F (Rd, s+ t) → F (Rd, s)] = nt+ s.

(2) Let d ≥ 2 be an even integer, and t ≥ 1, s ≥ 2. Then

TCΣs,n[p : F (Rd, s+ t) → F (Rd, s)] ∈ {nt+ s− 1, nt+ s}.

5.2. Some generalized projective product spaces

Let τ be any involution on M. Consider the following generalized projective product
space

X(M,S2m+1) :=
M × S2m+1

(x, y) ∼ (τ(x),−y)
.

We have a fibre bundle p : X(M,S2m+1) → RP 2m+1 with fibre M. We define a
Z2-action on X(M,S2m+1) by defining an involution

σ([x, y]) := [x, ỹ],
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where y = (y0, y1, . . . , y2m, y2m+1) and ỹ = (−y1, y0, . . . ,−y2m+1, y2m). It can be
observed that σ defines a free involution on X(M,S2m+1). A Z2-action on RP 2m+1

is defined by

g · [y0 : y1 : · · · : y2m : y2m+1] := [−y1 : y0 : · · · : −y2m+1 : y2m].

We now observe the following:

p([x, (−y1, y0, . . . ,−y2m+1, y2m)]) = [−y1 : y0 : · · · : −y2m+1 : y2m]

= g · [y0 : y1 : · · · : y2m : y2m+1].

This shows that p : X(M,S2m+1) → RP 2m+1 is a Z2-equivariant map. One can
also show that p is in fact a G-fibration. Observe that

X(M,S2m+1)nRP2m+1

= {([x1, y1], . . . , [xn, yn]) ∈ X(M,S2m+1)n | yi = ±yj , 1 ≤ i, j ≤ n}.

Since Z2 acts freely on X(M,S2m+1), we have free diagonal Z2-action on
X(M,S2m+1)nRP2m+1 . Thus X(M,S2m+1)nRP2m+1 is Z2-connected. Therefore using
proposition 4.18 we get the following inequality:

TCZ2,n[p : X(M,S2m+1) → RP 2m+1] ≤ catZ2(X(M,S2m+1)nRP2m+1).

From [12, proposition 3.5] we get catZ2(X(M,S2m+1)nRP2m+1) =

cat(X(M,S2m+1)nRP2m+1/Z2). Using the dimensional inequality for category,
we obtain

TCZ2,n[p : X(M,S2m+1) → RP 2m+1] ≤ n dim(M) + 2m+ 2.

In particular, if M = RP k with any involution, then we have

TCn(RP k) ≤ TCZ2,n[p : X(RP k, S2m+1) → RP 2m+1] ≤ nk + 2m+ 2.

Suppose k = 2r, then using [26, corollary 8.2], we have

nk ≤ TCZ2,n[p : X(RP k, S2m+1) → RP 2m+1] ≤ nk + 2m+ 2.
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