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In this paper, we characterize jump phenomena of the n-th eigenvalue of self-adjoint
discrete Sturm–Liouville problems in any dimension. For a fixed Sturm–Liouville
equation, we completely characterize jump phenomena of the n-th eigenvalue. For a
fixed boundary condition, unlike in the continuous case, the n-th eigenvalue exhibits
jump phenomena and we describe the singularity under a non-degenerate
assumption. Compared with the continuous case in Hu et al. (2019, J. Differ. Equ.
266, 4106–4136) and Kong et al. (1999, J. Differ. Equ. 156, 328–354), the jump set
here is involved with coefficients of the Sturm–Liouville equations. This, along with
arbitrariness of the dimension, causes difficulty when dividing the jump areas. We
study the singularity by partitioning and analysing the local coordinate systems, and
provide a Hermitian matrix which can determine the areas’ division. To prove the
asymptotic behaviour of the n-th eigenvalue, we generalize the method developed in
Zhu and Shi (2016, J. Differ. Equ. 260, 5987–6016) to any dimension. As an
application, by transforming the continuous Sturm–Liouville problem of Atkinson
type to a discrete one, we determine the number of eigenvalues and obtain complete
characterization of jump phenomena of the n-th eigenvalue for the Atkinson type.
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behaviour
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1. Introduction

Sturm–Liouville problems in the discrete version come from several physical models,
including the vibrating string and random walk with discrete time process [4, 9].
We briefly introduce these two models. Suppose that a weightless string bears l
particles with masses m1, . . . ,ml, and the horizontal distance between mi and mi+1

is 1/ci, 1 � i � l − 1. Moreover, the string extends to length 1/cl beyond ml and
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Figure 1. Vibrating string.

Figure 2. Random walk with discrete time process.

1/c0 beyond m1. Let si, 1 � i � l, be the displacement of the particle mi at a
fixed time. Both ends are pinned down (i.e. s0 = sl+1 = 0). Since the particle mi

does not move horizontally, we may assume that the horizontal component of the
tension at mi is both unit from the left and right, respectively. Then the restoring
forces, induced by the vertical component of the tension from the left and right,
are ci−1(si − si−1) and ci(si − si+1), respectively. See Fig. 1.

Therefore, by Newton’s second law,

− mi
d2

dt2
si = ci−1(si − si−1) + ci(si − si+1) = −∇(ciΔsi), 1 � i � l, (1.1)

where Δsi = si+1 − si and ∇si = si − si−1. Taking si = yi cos(ωt), where yi is the
amplitude of mi, we obtain from (1.1) that

−∇(ciΔyi) = λmiyi, 1 � i � l,

where λ = ω2. Since the boundary condition corresponds to the assumption
that both ends are pinned down, this system becomes a self-adjoint discrete
Sturm–Liouville problem.

Another model of the discrete Sturm–Liouville equation is random walking with
discrete time process from probability theory.

Let a particle be in one of the l positions 1, . . . , l at t = 0. Suppose that the
particle is in position i at t = t0. The rule of this random walking is that the particle
will move to i + 1 at t = t0 + 1 with a probability αi, move to i − 1 at t = t0 + 1
with a probability βi, and stay in position i with a probability 1 − αi − βi. See
Fig. 2. Moreover, if the particle moves to the left of position 1, or to the right of
position l, it is considered permanently lost. So it is reasonable to set α0 = 0 and
βl+1 = 0. Define prs(j) as the probability of the particle being in position s at t = j
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and starting in position r at t = 0. Then we have prs(0) = δrs, and

prs(j + 1) = αs−1pr,s−1(j) + βs+1pr,s+1(j) + (1 − αs − βs)prs(j), j � 0, (1.2)

where δrs = 1 if r = s, and δrs = 0 if r �= s. Let P (j) = (prs(j))1�r,s�l, j � 0, and

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

−α1 − β1 α1

β2 −α2 − β2 α2

β3 −α3 − β3
. . .

. . . . . . αl−1

βl −αl − βl

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then P (0) = Il and (1.2) is equivalent to

P (j + 1) = P (j)(Il + T ), j � 0.

So P (j + 1) = (Il + T )j , j � 0. However, the form (Il + T )j provides little infor-
mation on asymptotic form of P (j) for large j. Instead, in the spectral theory,
the eigenvalues and corresponding eigenfunctions of T play an important role in
studying properties of P (j) for any j � 1. To find an eigenvalue λ and the cor-
responding eigenfunction (y1, y2, . . . , yl) of −T , we need to study the self-adjoint
discrete Sturm–Liouville equation

−∇(gjΔyj) = λajyj , 1 � j � l,

with the boundary condition y0 = yl+1 = 0, where gj = αjaj and gj−1 = βjaj .
Motivated by these two interesting models and recent interest on discrete

equations [5, 6, 9], in this paper we consider a general self-adjoint discrete d-
dimensional Sturm–Liouville problem for any d � 1. It consists of a symmetric
discrete Sturm–Liouville equation

−∇(PiΔyi) + Qiyi = λWiyi, 1 � i � N, (1.3)

and a self-adjoint boundary condition

A

(−y0

yN

)
+ B

(
P0Δy0

PNΔyN

)
= 0, (1.4)

where Δyi = yi+1 − yi, ∇yi = yi − yi−1, y = {yi}N+1
i=0 is a sequence of d-

dimensional complex-valued vectors; P = {Pj}N
j=0, Q = {Qi}N

i=1 and W = {Wi}N
i=1

are sequences of d × d complex-valued matrices and satisfy

Pj , Qi,Wi are Hermitian Pj is invertible, Wi positive definite, (1.5)

0 � j � N ; λ ∈ C is the spectral parameter, N � 2; A and B are 2d × 2d complex-
valued matrices such that

rank (A,B) = 2d, AB∗ = BA∗. (1.6)

The spectrum of a self-adjoint discrete Sturm–Liouville problem consists of real
and finite eigenvalues, and thus can be arranged in the non-decreasing order. The
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n-th eigenvalue can be considered as a function defined on the space of self-adjoint
discrete Sturm–Liouville problems or on its subset. This function is not continuous
in general, see the 1-dimensional case in [22]. The n-th eigenvalue exhibits jump
phenomena near the discontinuity points. Unlike only jumping to −∞ in the con-
tinuous case, the n-th eigenvalue also blows up to +∞ in the discrete case. So we
call the set of all discontinuity points in the considered space to be the jump set,
and call any element in the jump set to be a jump point.

The aim of this paper is to determine the jump set and to completely provide the
asymptotic behaviour of the n-th eigenvalue near any fixed jump point for the dis-
crete Sturm–Liouville problems. As applications, we consider the Sturm–Liouville
problem of Atkinson type, transform it into a discrete Sturm–Liouville problem,
and then apply the discrete method to completely characterize jump phenomena
of the n-th eigenvalue for the Atkinson type. Though the n-th eigenvalue jumps
to ±∞ near the jump points in the Atkinson type as well as in the discrete case,
the jump set in the Atkinson type is the same one as in the continuous case and
is independent of coefficients of the Sturm–Liouville equations. This leads tremen-
dous difference with the discrete case, where the jump set is involved heavily with
coefficients of the equations.

Singularity of the n-th eigenvalue of Sturm–Liouville problems has attracted a lot
of attention (see [7, 8, 10, 13, 16, 20, 22] and references therein) since Rellich [18].
Let us mention three contributions to finding the jump set of the n-th eigenvalue
and providing all the asymptotic behaviour near each jump point. Kong, Wu and
Zettl completely characterized it for the continuous 1-dimensional Sturm–Liouville
problems, while Hu et al. gave the answer for the continuous d-dimensional case,
where d � 2. Zhu and Shi obtained the desired result for the discrete 1-dimensional
case. This paper is devoted to the discrete case in any dimension. We mention
here that our result in theorem 4.4 for jump phenomena of the n-th eigenvalue
on the boundary conditions is complete, while the conclusion in theorem 4.9 for
jump phenomena on the equations is partial due to the non-degenerate assumption
(4.22)–(4.23).

Compared with the continuous Sturm–Liouville problems, the n-th eigenvalue in
the discrete case is not continuously dependent on the equations, and the criterion
for continuity of the n-th eigenvalue is different due to the finiteness of the number
of eigenvalues. This makes the method used in the continuous case [8, 13] unable
to apply to the discrete case. On the other hand, compared with the 1-dimensional
discrete case, the first difficulty for any dimensional case is how to divide areas in
layers of the considered space such that the n-th eigenvalue has the same jump
phenomena in any given area. Our method in this paper is to find some invertible
elementary transformations converting the matrix, which determines the number
of eigenvalues of the Sturm–Liouville problems, to a Hermitian matrix. The areas’
division is then determined by the spectral information of this Hermitian matrix.
The second difficulty is how to prove the asymptotic behaviour of the n-th eigen-
value. Our approach is first to prove the asymptotic behaviour in a certain direction
using the monotonicity of continuous eigenvalue branches, and then combine the
local topological property (geometric structure) of the considered space with the
perturbation theory of eigenvalues to obtain the whole asymptotic behaviour. This

https://doi.org/10.1017/prm.2022.9 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.9


Jump phenomena of the n-th eigenvalue of discrete Sturm–Liouville problems 623

can be regarded as a generalization of the method developed for 1-dimensional dis-
crete case in [22] to any dimension. Finally, though our method for the Atkinson
type is by transforming the Sturm–Liouville problem into a discrete one, it turns
out to be no singularity of the n-th eigenvalue on the equations for the Atkinson
type.

The rest of this paper is organized as follows. In § 2, topology on the space of
Sturm–Liouville equations, and that on the space of boundary conditions are pre-
sented. Properties of eigenvalues are given in § 3. The number and multiplicity of
eigenvalues are discussed in § 3.1, continuous eigenvalue branches are constructed
and their properties are provided in § 3.2 and properties of the n-th eigenvalue are
presented in § 3.3. In § 4, jump phenomena of the n-th eigenvalue on the boundary
conditions are completely characterized for a fixed equation in § 4.1, while jump
phenomena of the n-th eigenvalue on the equations are obtained for a fixed bound-
ary condition under a non-degenerate assumption in § 4.2. Sturm–Liouville problem
of the Atkinson type is transformed to a discrete one, and jump phenomena of the
n-th eigenvalue are provided thoroughly in § 5. Conclusions are given in § 6.

Notation.
By R and C denote the set of all the real and complex numbers, respectively.

The set of all m × n matrices over a field F is denoted by Mm,n(F), and Mn,n(F)
is abbreviated to Mn(F). A∗ is the complex conjugate transpose of A ∈ Mm,n(F),
while AT is the transpose of A. Hn(F) is the set of all n × n Hermitian matri-
ces, while Pn(F) is the set of all n × n positive definite matrices over a field
F. For a matrix S ∈ Mn(F), its entries and columns are denoted by sij and
sj = (s1j , . . . , snj)T , respectively, 1 � i, j � n. By In denote the n × n unit matrix.
�(K) is the cardinality of the set K. By r−(A), r0(A)and r+(A) denote the total
multiplicity of negative, zero and positive eigenvalues of A ∈ Hn(C), respectively.
Moreover, L((a, b), Cn×n) is the space of all n × n matrix-valued functions satisfying
that every component of such a function is Lebesgue integrable on (a, b).

2. Space of self-adjoint discrete Sturm–Liouville problems

In this section, we introduce the topology on the space of self-adjoint discrete
Sturm–Liouville problems.

The space of discrete Sturm–Liouville equations is

ΩC

N := {ωωω =
({P−1

j }N
j=0, {Qi}N

i=1, {Wi}N
i=1

) ∈ (Md(C))3N+1 : (1.5) holds}
with the topology induced by C

(3N+1)d2
.

Note that the space of self-adjoint boundary conditions is the same as the
continuous case. Following [8], it is exactly the quotient space

BC := GL(2d, C)\L2d,4d(C), (2.1)

where

L2d,4d(C) := {(A,B) ∈ M2d,4d(C) : rank(A,B) = 2d,AB∗ = BA∗}
and

GL(2d, C) := {T ∈ M2d(C) : det T �= 0}.
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The boundary condition in BC is denoted by [A |B] := {(TA | TB) : T ∈
GL(2d, C)}. Bold faced capital Latin letters, such as A, are also used for boundary
conditions.

Next we introduce the following form for the local coordinate systems on BC. Let
K be any subset of {1, 2, . . . , 2d}. Denote

K1 = K ∩ {1, 2, . . . , d}, K2 = K ∩ {d + 1, d + 2, . . . , 2d}. (2.2)

By EK denote the 4d × 4d matrix generated from I4d by multiplying −1 to the
(k + 2d)-th column and then exchanging the k-th and the (k + 2d)-th columns for
each k ∈ K. Then it has the following form:

EK =
(

EK,1

EK,2

)
=

⎛
⎜⎜⎝

E1 0 Id − E1 0
0 E2 0 Id − E2

E1 − Id 0 E1 0
0 E2 − Id 0 E2

⎞
⎟⎟⎠ , (2.3)

where EK,1, EK,2 ∈ M2d,4d(C), E1 = {α1, α2, . . . , αd} and E2 = {β1, β2, . . . , βd}
are d × d diagonal matrices with

αi =
{

0 if i ∈ K1,
ei if i /∈ K1,

βi =
{

0 if d + i ∈ K2,
ei if d + i /∈ K2,

(2.4)

and ei is the i-th column of Id. Then

E∗
KJ2dEK = J2d, EKE∗

K = I4d, (2.5)

where

J2d =
(

0 −I2d

I2d 0

)
.

We define

OC

K := {[(S | I2d)EK ] : S ∈ H2d(C)}. (2.6)

For A = [(S | I2d)EK ] ∈ OC

K , we denote S by S(A) to indicate its dependence on
A if necessary. It is clear that OC

K defined here coincides with that defined in (2.1)
of [8]. It follows from theorem 2.1 in [8] that

BC =
⋃

K⊂{1,2,...,2d}
OC

K .

Moreover, BC is a connected and compact real-analytic manifold of dimension 4d2.
The readers are also referred to [2, 3, 14, 17] for more details.

The product space ΩC

N × BC is the space of self-adjoint discrete Sturm–Liouville
problems, and (ωωω,A) is used to stand for an element in ΩC

N × BC in the sequel.

3. Properties of eigenvalues

In this section, we study properties of eigenvalues of the self-adjoint discrete
Sturm–Liouville problems.
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3.1. The number and multiplicity of eigenvalues

Let

l[0, N + 1] :=
{
y = {yi}N+1

i=0 : yi ∈ C
d, 0 � i � N + 1

}
.

The initial value problem of (1.3) has a unique solutions. More precisely,

Lemma 3.1. Let zi0 , z̃i0 ∈ C
d for some 1 � i0 � N . Then, for each λ ∈ C, (1.3) has

a unique solution y(λ) ∈ l[0, N + 1] satisfying yi0(λ) = zi0 , Pi0Δyi0(λ) = z̃i0 .

Proof. This can be deduced by the invertibility of Pj for 0 � j � N and the iteration
of

PiΔyi = Pi−1Δyi−1 − (λWi − Qi)yi, 1 � i � N. �

Recall that λ is called an eigenvalue of the discrete Sturm–Liouville problem
(ωωω,A) if there exists y ∈ l[0, N + 1] which is non-trivial and solves (1.3)–(1.4). Here
y is called an eigenfunction corresponding to λ, and it is said to be normalized
if
∑N

i=1 y∗
i Wiyi = 1. By σ(ωωω,A) denote the spectral set of (ωωω,A). For any λ ∈

C, let φj(λ) = {φj
i (λ)}N+1

i=0 , j = 1, . . . , 2d, be the fundamental solutions to (1.3)
determined by the initial data

(
φ1

0(λ) · · · φ2d
0 (λ)

P0Δφ1
0(λ) · · · P0Δφ2d

0 (λ)

)
= I2d.

Denote

Φ(λ) :=

(−φ1
0(λ) · · · −φ2d

0 (λ)

φ1
N (λ) · · · φ2d

N (λ)

)
, Ψ(λ) :=

(
P0Δφ1

0(λ) · · · P0Δφ2d
0 (λ)

PNΔφ1
N (λ) · · · PNΔφ2d

N (λ)

)
.

We write Φ(λ) and Ψ(λ) as Φωωω(λ) and Ψωωω(λ) if necessary. Then the eigenvalues of
(ωωω,A) can be regarded as zeros of the polynomial Γ(ωωω,A) as follows.

Lemma 3.2. λ ∈ σ(ωωω,A) if and only of λ is a zero of

Γ(ωωω,A)(λ) := det(AΦ(λ) + BΨ(λ)).

Proof. The proof is similar to that of lemma 3.2 in [23]. �

Let λ ∈ σ(ωωω,A). The order of λ as a zero of Γ(ωωω,A) is called its analytic multiplic-
ity. The number of linearly independent eigenfunctions for λ is called its geometric
multiplicity. Let xi = PiΔyi for 0 � i � N . Then the Sturm–Liouville equation (1.3)
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can be transformed to a discrete linear Hamiltonian system:

JdΔ
(

yi

xi

)
=
((−Qi+1 0

0 P−1
i

)
+ λ

(
Wi+1 0

0 0

))
R

(
yi

xi

)
, 0 � i � N − 1,

where R(yT
i , xT

i )T = (yT
i+1, x

T
i )T is the partial right shift operator and

Jd =
(

0 −Id

Id 0

)
.

Then by theorem 4.1 in [21], we get the relationship of analytic and geometric
multiplicities of λ:

Lemma 3.3. The analytic and geometric multiplicities of λ ∈ σ(ωωω,A) are the same.

Therefore, we do not distinguish these two multiplicities of λ. Let �1(σ(ωωω,A) ∩ I)
be the number of eigenvalues in I ⊂ R, counting multiplicities, of (ωωω,A). Since
σ(ωωω,A) ⊂ R by [19], we have �1(σ(ωωω,A) ∩ R) = �1(σ(ωωω,A)). The next lemma
determines �1(σ(ωωω,A)).

Lemma 3.4.

�1(σ(ωωω,A)) = (N − 2)d + rank(A1P
−1
0 + B1, B2), (3.1)

where Aj , Bj ∈ M2d×d (j = 1, 2) are given by

A = [A | B] = [(A1, A2)|(B1, B2)]. (3.2)

Proof. By theorem 4.1 in [19],

�1(σ(ωωω,A)) = (N − 2)d + rank(A1 + B1P0, B2).

Then (3.1) is obtained by (A1 + B1P0, B2)
[

P−1
0 0
0 Id

]
= (A1P

−1
0 + B1, B2). �

Note that (N − 2)d � �1(σ(ωωω,A)) � Nd.

3.2. Continuous eigenvalue branch

In this subsection, we construct continuous eigenvalue branches. Then we study
their derivative formulae and monotonicity in some directions.

The first lemma is the small perturbation theory of eigenvalues.

Lemma 3.5. Let (ωωω0,A0) ∈ O ⊂ ΩC

N × BC, and c1, c2 ∈ R \ σ(ωωω0,A0) with c1 < c2.
Then there exists a neighbourhood U ⊂ O of (ωωω0,A0) such that for each (ωωω,A) ∈ U ,
�1(σ(ωωω,A) ∩ (c1, c2)) = �1(σ(ωωω0,A0) ∩ (c1, c2)) and c1, c2 /∈ σ(ωωω,A).

Proof. Using lemma 3.2, the proof is by a standard perturbation procedure for zeros
of the analytic function Γ(ωωω0,A0). �

By lemma 3.5 and a similar approach to theorem 3.5 in [23], we then construct
the continuous eigenvalue branches.
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Lemma 3.6. Let (ωωω0,A0) ∈ ΩC

N × BC and λ∗ ∈ σ(ωωω0,A0) with multiplicity m. Fix a
small ε > 0 such that σ(ωωω0,A0) ∩ [λ∗ − ε, λ∗ + ε] = {λ∗}. Then there is a connected
neighbourhood U of (ωωω0,A0) and continuous functions Λi : U → R, 1 � i � m,
such that λ∗ − ε < Λ1(ωωω,A) � · · · � Λm(ωωω,A) < λ∗ + ε and λ∗ ± ε /∈ σ(ωωω,A) for
all (ωωω,A) ∈ U , where {Λi(ωωω,A)}m

i=1 ⊂ σ(ωωω,A).

Here Λi : U → R, 1 � i � m, are called the continuous eigenvalue branches
through λ∗. We write Λi(ωωω) when A is fixed, and write Λi(A) when ωωω is fixed.
Then we shall make a continuous choice of eigenfunctions for the eigenvalues along
a continuous simple eigenvalue branch (m = 1).

Lemma 3.7. Let u0 be an eigenfunction for a simple eigenvalue λ∗ ∈ σ(ωωω0,A0),
and Λ be the continuous eigenvalue branch defined on U through λ∗. Then there
exists a neighbourhood U1 ⊂ U of (ωωω0,A0) such that for any (ωωω,A) ∈ U1, there is
an eigenfunction uΛ(ωωω,A) for Λ(ωωω,A) satisfying that uΛ(ωωω,A) = u0, and uΛ(ωωω,A) →
uΛ(ωωω0,A0) in C

(N+2)d as U1 	 (ωωω,A) → (ωωω0,A0).

Proof. The proof is similar to that of lemma 4.3 in [23], and thus we omit the
details. �

Besides lemma 3.7, we also need the following lemma to deduce the derivative
formulae for continuous simple eigenvalue branches.

Lemma 3.8. Let y be an eigenfunction for λ ∈ σ(ωωω,A) and z be an eigenfunction
for λ̃ ∈ σ(ω̃̃ω̃ω,A), where ωωω = (P−1, Q,W ), ω̃̃ω̃ω = (P̃−1, Q̃, W̃ ) and A = [A |B]. Then

(Δz0)∗P̃0y0 − z∗0P0Δy0 = (ΔzN )∗P̃NyN − z∗NPNΔyN . (3.3)

Proof. For convenience, denote

(A, B) =

⎛
⎜⎜⎜⎝

α1

α2

...
α2d

⎞
⎟⎟⎟⎠ , Y =

⎛
⎜⎜⎝

−y0

yN

P0Δy0

PNΔyN

⎞
⎟⎟⎠ , Z =

⎛
⎜⎜⎝

−z0

zN

P̃0Δz0

P̃NΔzN

⎞
⎟⎟⎠ , (3.4)

where αi ∈ M1,4d(C), i = 1, . . . , 2d. Then

(A, B)J2d(A, B)∗ = 0, (A, B)Y = 0, (A, B)Z = 0. (3.5)

Since rank(A, B) = 2d, the first equation in (3.5) yields that each solution of the
equation (A, B)X = 0 is a linear combination of J2dα

∗
i , 1 � i � 2d. From the last

two equations in (3.5), we know that there exists ci, di ∈ C, 1 � i � 2d, such that
Y =

∑2d
i=1 ciJ2dα

∗
i and Z =

∑2d
i=1 diJ2dα

∗
i . The first equation in (3.5) also implies
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that

αiJ2dα
∗
j = 0, 1 � i, j � 2d.

So

Z∗J2dY =

(
2d∑

i=1

diJ2dα
∗
i

)∗

J2d

(
2d∑

i=1

ciJ2dα
∗
i

)
= 0,

which is equivalent to (3.3). The proof is complete. �

Note that the method used in lemma 4.4 of [22] depends on separated and coupled
boundary conditions, and thus cannot be applied to lemma 3.8 here for mixing
boundary conditions when d � 2. With the help of lemma 3.8, we give the derivative
formulae of the continuous simple eigenvalue branch with respect to coefficients of
the Sturm–Liouville equations.

Lemma 3.9. Fix A ∈ BC. Let ωωω = (P−1, Q,W ) ∈ ΩC

N , λ∗ be a simple eigenvalue of
(ωωω,A), y ∈ l[0, N + 1] be a normalized eigenfunction for λ∗, and Λ be the continuous
simple eigenvalue branch over ΩC

N through λ∗. Then

dΛ|ωωω(H,K,L) = −
N−1∑
i=0

(PiΔyi)∗Hi(PiΔyi) +
N∑

i=1

y∗
i Kiyi − λ∗

N∑
i=1

y∗
i Liyi (3.6)

for all (H,K,L) = ((H0, . . . , HN ), (K1, . . . ,KN ), (L1, . . . , LN )) ∈ (Hd(C))3N+1

and (P−1 + H,Q + K,W + L) ∈ ΩC

N .

Proof. Let σσσ ∈ ΩC

N with σσσ = (P−1 + H,Q + K,W + L) =: (P̃−1, Q̃, W̃ ). By
lemma 3.7, we can choose an eigenfunction z = z(·,σσσ) for Λ = Λ(σσσ) with σσσ suf-
ficiently close to ωωω in ΩC

N such that z → y as σσσ → ωωω. Then it follows from (1.3)
that

[Λ(σσσ) − Λ(ωωω)]
N∑

i=1

z∗i Wiyi

=
N∑

i=1

[z∗i ∇(PiΔyi) − (∇(P̃iΔzi))∗yi] − Λ(σσσ)
N∑

i=1

z∗i Liyi +
N∑

i=1

z∗i Kiyi

= −
N−1∑
i=0

Δz∗i PiΔyi +
N∑

i=1

∇(z∗i PiΔyi) +
N−1∑
i=0

Δz∗i P̃iΔyi −
N∑

i=1

∇(Δz∗i P̃iyi)

− Λ(σσσ)
N∑

i=1

z∗i Liyi +
N∑

i=1

z∗i Kiyi

=
N−1∑
i=0

(P̃iΔzi)∗(P−1
i − P̃−1

i )(PiΔyi) + z∗NPNΔyN − z∗0P0Δy0

− (ΔzN )∗P̃NyN + (Δz0)∗P̃0y0 − Λ(σσσ)
N∑

i=1

z∗i Liyi +
N∑

i=1

z∗i Kiyi.
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By lemma 3.8, we get

[Λ(σσσ) − Λ(ωωω)]
N∑

i=1

z∗i Wiyi

= −
N−1∑
i=0

(P̃iΔzi)∗Hi(PiΔyi) − Λ(σσσ)
N∑

i=1

z∗i Liyi +
N∑

i=1

z∗i Kiyi,

which yields that (3.6) holds. This completes the proof. �

Let us fix all the components of ωωω except P−1
j , and write the perturbed term P−1

j

by P−1
j (ωωω) to indicate its dependence on ωωω for a given 0 � j � N − 1. Qi(ωωω) has

the similar meaning for 1 � i � N . Then we get the following monotonicity result.

Corollary 3.10. Fix A ∈ BC. Let Λ be a continuous eigenvalue branch defined on
V ⊂ ΩC

N . If P−1
j (σσσ) − P−1

j (ωωω) is positive semi-definite for a given 0 � j � N − 1,
then Λ(σσσ) � Λ(ωωω). If Qi(σσσ) − Qi(ωωω) is positive semi-definite for a given 1 � i � N,
then Λ(ωωω) � Λ(σσσ).

Proof. We only prove it for the case that P−1
j (σσσ) − P−1

j (ωωω) is positive semi-
definite, since the other is similar. Let ωωω(s) = sσσσ + (1 − s)ωωω for 0 � s � 1. Since
Γ(ωωω(s),A)(λ) = det(AΦωωω(s)(λ) + BΨωωω(s)(λ)) is a polynomial of the two variables s
and λ, we have that either there exist finite points s1, . . . , sn0 ∈ [0, 1] such that
Λ(ωωω(s)) is a simple eigenvalue for (ωωω(s),A) with s ∈ [0, 1] \ {s1, . . . , sn0}, or Λ(ωωω(s))
is a multiple eigenvalue for all (ωωω(s),A) with s ∈ [0, 1], see § 13 in chapter 5 of [11].
For the former case, choose any s0 ∈ [0, 1]\{s1, . . . , sn0}. Since Λ(ωωω(s0)) is simple,
by lemma 3.9 we have

d
ds

Λ(ωωω(s0)) = −(PjΔyj)∗(P−1
j (σσσ) − P−1

j (ωωω))(PjΔyj) � 0,

where y ∈ l[0, N + 1] is a normalized eigenfunction for Λ(ωωω(s0)). This implies that
Λ(ωωω(·)) is non-increasing on [0, 1]. Thus, Λ(σσσ) = Λ(ωωω(1)) � Λ(ωωω(0)) = Λ(ωωω). For
the latter case, there exists τττ ∈ ΩC

N such that Λ(ωωω + tτττ) is a simple eigenvalue for
(ωωω + tτττ ,A), where t ∈ (0, t0) and t0 > 0 is small enough. Then it follows from the
former case that Λ(ωωω(·) + tτττ) is non-increasing on [0, 1] for any fixed t ∈ (0, t0).
Thus,

Λ(σσσ) = Λ(ωωω(1)) = lim
t→0+

Λ(ωωω(1) + tτττ) � lim
t→0+

Λ(ωωω(0) + tτττ) = Λ(ωωω(0)) = Λ(ωωω).

�

Then we give the derivative formula of a continuous simple eigenvalue branch
with respect to boundary conditions.

Lemma 3.11. Fix ωωω ∈ ΩC

N . Let λ∗ be a simple eigenvalue of (ωωω,A) for some A ∈
OC

K , y ∈ l[0, N + 1] be a normalized eigenfunction for λ∗, and Λ be the continuous
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simple eigenvalue branch through λ∗. Then

dΛ|A(H) = Y ∗E∗
K,1HEK,1Y

for H ∈ H2d(C), where EK,1 and Y are given in (2.3) and (3.4), respectively.

Proof. By (2.6), there exists S ∈ H2d(C) such that A = [S | I2d]EK . Let B = [S +
H | I2d]EK with H ∈ H2d. Then there exists an eigenfunction ỹ = yΛ(B) for Λ(B)
such that ỹ → y in C

(N+2)d as B → A. Ỹ has the similar meaning as Y . Note that
ỹ and y satisfy

−∇(PiΔỹi) + Qiỹi = Λ(B)Wiỹi, −∇(PiΔyi) + Qiyi = Λ(A)Wiyi, 1 � i � N,

and thus

(Λ(B) − Λ(A))ỹ∗
i Wiyi = −Δ[yi−1, ỹi−1],

where [yi, ỹi] = (Δỹi)∗Piyi − ỹ∗
i PiΔyi. From the boundary conditions A and B, we

have

SEK,1Y + EK,2Y = 0 and (S + H)EK,1Ỹ + EK,2Ỹ = 0. (3.7)

It then follows from (2.5) and (3.7) that

(Λ(B) − Λ(A))
N∑

i=1

ỹ∗
i Wiyi = [y0, ỹ0] − [yN , ỹN ] = Ỹ ∗J∗

2dY

= Ỹ ∗E∗
KJ∗

2dEKY = −Ỹ ∗E∗
K,2EK,1Y + Ỹ ∗E∗

K,1EK,2Y

= Ỹ ∗E∗
K,1(S + H)EK,1Y − Ỹ ∗E∗

K,1SEK,1Y

= Ỹ ∗E∗
K,1HEK,1Y.

This completes the proof. �

By the derivative formula of a continuous simple eigenvalue branch in lemma 3.11,
the following result can be obtained with a similar argument to corollary 3.10.

Corollary 3.12. Fix ωωω ∈ ΩC

N . Let Λ be a continuous eigenvalue branch defined
on U ⊂ OC

K . Then Λ(A) � Λ(B) if A,B ∈ U and S(B) − S(A) is positive semi-
definite.

The monotonicity of continuous eigenvalue branches in corollaries 3.10 and 3.12
plays an important role in studying the asymptotic behaviour of the n-th eigenvalue
in a certain direction, see (4.19) and (4.39).
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3.3. Properties of the n-th eigenvalue

Based on lemma 3.4, the eigenvalues of (ωωω,A) ∈ ΩC

N × BC can be arranged in the
following non-decreasing order:

λ1(ωωω,A) � λ2(ωωω,A) � · · · � λ�1(σ(ωωω,A))(ωωω,A).

Therefore, for any 1 � n � Nd, the n-th eigenvalue can be regarded as a function
defined on ΩC

N × BC or on its subset, called the n-th eigenvalue function. Firstly, we
provide a criterion for all these functions to be continuous on a subset of ΩC

N × BC.

Lemma 3.13. Let O be a connected subset of ΩC

N × BC. If �1(σ(ωωω,A)) ≡ k0,
(ωωω,A) ∈ O, for some k0 > 0, then the restrictions of λn, 1 � n � k0, to O are
continuous. Moreover, they are locally continuous eigenvalue branches on O.

Then we list several other properties of the n-th eigenvalue function in order
to study its asymptotic behaviour. The following lemma strengthens the result in
theorem 2.2 of [23].

Lemma 3.14. Let O ⊂ ΩC

N × BC, �1(σ(ωωω,A)) = m1 + m2 + m3 for all (ωωω,A) ∈ O,
and �1(σ(ωωω0,A0)) = m2 for some (ωωω0,A0) ∈ Ō \ O, where mi � 0, 1 � i � 3. If

lim
O�(ωωω,A)→(ωωω0,A0)

λn(ωωω,A) = −∞, 1 � n � m1, (3.8)

and

lim
O�(ωωω,A)→(ωωω0,A0)

λn(ωωω,A) = +∞, m1 + m2 + 1 � n � m1 + m2 + m3, (3.9)

then

lim
O�(ωωω,A)→(ωωω0,A0)

λn(ωωω,A) = λn−m1(ωωω0,A0), m1 + 1 � n � m1 + m2.

Proof. Let c1, c2 ∈ R such that �1(σ(ωωω0,A0) ∩ (c1, c2)) = m2. Then we get by
lemma 3.5 that there exists a neighbourhood U ⊂ O of (ωωω0,A0) such that
�1(σ(ωωω,A) ∩ (c1, c2)) = m2 and c1, c2 /∈ σ(ωωω,A) for all (ωωω,A) ∈ U . It follows from
(3.8)–(3.9) that U can be shrunk such that �1(σ(ωωω,A) ∩ (−∞, c1)) = m1 and
�1(σ(ωωω,A) ∩ (c2,∞)) = m3 for all (ωωω,A) ∈ U . This implies that σ(ωωω,A) ∩ (c1, c2) =
{λn(ωωω,A) : m1 + 1 � n � m1 + m2} for all (ωωω,A) ∈ U . Then the conclusion holds
again by lemma 3.5. �

Lemma 3.15. Let O be a connected subset of ΩC

N × BC and c1, c2 ∈ R with c1 < c2.
Assume that for all (ωωω,A) ∈ O, �1(σ(ωωω,A)) = k, �1(σ(ωωω,A) ∩ (c1, c2)) = m with
m < k, and c1, c2 /∈ σ(ωωω,A). Then the other k − m eigenvalues out of [c1, c2],
denoted by λ̂1(ωωω,A) � · · · � λ̂k−m(ωωω,A), have the following properties.

(1) Let Ei = {λ̂i(ωωω,A) : (ωωω,A) ∈ O}. Then for all 1 � i � k − m,

either Ei ⊂ (−∞, c1) or Ei ⊂ (c2,+∞),

and there exists 1 � i0 � k such that λ̂i = λi0 is continuous on O.
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(2) Let (ωωω0,A0) ∈ Ō \ O, �1(σ(ωωω0,A0)) = m, and σ(ωωω0,A0) ⊂ (c1, c2). If Ei0 ⊂
(−∞, c1) for some 1 � i0 � k − m, then

lim
O�(ωωω,A)→(ωωω0,A0)

λ̂i(ωωω,A) = −∞, 1 � i � i0.

If Ej0 ⊂ (c2,+∞) for some 1 � j0 � k − m, then

lim
O�(ωωω,A)→(ωωω0,A0)

λ̂j(ωωω,A) = +∞, j0 � j � k − m.

The following result indicates that the monotonicity of λn in a certain direction
determines its asymptotic behaviour in this direction.

Lemma 3.16. Let O = {(ωωω,A)ν ∈ ΩC

N × BC : ν ∈ (ν0 − ε, ν0 + ε)}, where (ωωω,A)ν

is continuously dependent on ν ∈ (ν0 − ε, ν0 + ε) for some ε > 0. Assume that
�1(σ(ωωω,A)ν0) = m � 0, and for all ν ∈ (ν0 − ε, ν0 + ε) \ {ν0}, �1(σ(ωωω,A)ν) = k >
m.

(1) If λn(ν) := λn((ωωω,A)ν) is non-increasing on (ν0 − ε, ν0) for all 1 � n � k,
then

lim
ν→ν−

0

λn(ν) = −∞, 1 � n � k − m,

lim
ν→ν−

0

λn(ν) = λn−(k−m)(ν0), k − m + 1 � n � k.

(2) If λn(ν) is non-decreasing on (ν0 − ε, ν0) for all 1 � n � k, then

lim
ν→ν−

0

λn(ν) = λn(ν0), 1 � n � m, lim
ν→ν−

0

λn(ν) = +∞, m + 1 � n � k.

(3) If λn(ν) is non-increasing on (ν0, ν0 + ε) for all 1 � n � k, then

lim
ν→ν+

0

λn(ν) = λn(ν0), 1 � n � m, lim
ν→ν+

0

λn(ν) = +∞, m + 1 � n � k.

(4) If λn(ν) is non-decreasing on (ν0, ν0 + ε) for all 1 � n � k, then

lim
ν→ν+

0

λn(ν) = −∞, 1 � n � k − m,

lim
ν→ν+

0

λn(ν) = λn−(k−m)(ν0), k − m + 1 � n � k.

Note that the analyses in the proofs of lemmas 3.13, 3.15 and 3.16 are independent
of the dimension of the Sturm–Liouville problem (1.3)–(1.4). Thus they are indeed
a straightforward generalization of theorems 2.1, 2.3 and lemma 2.7 in [22].

4. Jump phenomena of the n-th eigenvalue of discrete Sturm–Liouville
problems

In this section, we completely characterize jump phenomena of the n-th eigenvalue
on the boundary conditions for a fixed equation. Then we characterize jump phe-
nomena of the n-th eigenvalue on the equations for a fixed boundary condition
under a non-degenerate assumption.
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4.1. Jump phenomena of the n-th eigenvalue on the boundary
conditions

Fix a Sturm–Liouville equation ωωω = (P−1, Q,W ) such that P−1
0 ∈ Pd(C) in this

subsection. Let K ⊆ {1, 2, . . . , 2d}. For any boundary condition A = [A | B] ∈ OC

K ,
it follows from (2.6) that there exists S ∈ H2d(C) such that A = [(S | I2d)EK ]. Let
us write S = S(A) in the partitioned form:

S(A) =
(

S1 S2

S∗
2 S3

)
,

where S1, S3 ∈ Hd(C) and S2 ∈ Md(C). Then it follows that

(A, B) = (S, I2d)EK

=
(

S1 S2 Id 0
S∗

2 S3 0 Id

)⎛⎜⎜⎝
E1 0 Id − E1 0
0 E2 0 Id − E2

E1 − Id 0 E1 0
0 E2 − Id 0 E2

⎞
⎟⎟⎠

=
(

S1E1 + E1 − Id S2E2 S1(Id − E1) + E1 S2(Id − E2)
S∗

2E1 S3E2 + E2 − Id S∗
2 (Id − E1) S3(Id − E2) + E2

)
.

Recall that Aj , Bj ∈ M2d×d, j = 1, 2, are defined in (3.2). Then we have

(A1P
−1
0 + B1, B2)

=
(

S1(E1P
−1
0 + Id − E1) + (E1 − Id)P−1

0 + E1 S2(Id − E2)
S∗

2 (E1P
−1
0 + Id − E1) S3(Id − E2) + E2

)
. (4.1)

From the structure of E1 and the fact that P−1
0 ∈ Pd(C), we infer that E1P

−1
0 +

Id − E1 is invertible. Then it follows that

(A1P
−1
0 + B1, B2)

(
(E1P

−1
0 + Id − E1)−1 0

0 Id

)
(4.2)

=
(

S1 + [(E1 − Id)P−1
0 + E1](E1P

−1
0 + Id − E1)−1 S2(Id − E2)

S∗
2 S3(Id − E2) + E2

)
.

Recall that K2 is defined in (2.2), and ei is the i-th column of Id. For convenience,
we set r = �(K2). Let us write K2 = {k1 + d, k2 + d, . . . , kr + d} with 1 � k1 < k2 <
· · · < kr � d, and

E0 = (ek1 , . . . , ekr
), (4.3)

if K2 �= ∅. For any A ∈ BC, we define

D(A) = (A1P
−1
0 + B1, B2). (4.4)

For any A ∈ OC

K , we define

SD
K(A) =

(
S1 + [(E1 − Id)P−1

0 + E1](E1P
−1
0 + Id − E1)−1 S2E0

E∗
0S∗

2 E∗
0S3E0

)
if K2 �= ∅,

(4.5)
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SD
K(A) = S1 + [(E1 − Id)P−1

0 + E1](E1P
−1
0 + Id − E1)−1 if K2 = ∅. (4.6)

Then the following result holds.

Lemma 4.1. Let A ∈ OC

K . Then

rankD(A) = rankSD
K(A) + d − r, (4.7)

and SD
K(A) ∈ Hd+r(C).

Proof. By (2.4), rank(E2) = d − r and thus (4.7) holds. To prove SD
K(A) ∈

Hd+r(C), it suffices to show that

[(E1 − Id)P−1
0 + E1](E1P

−1
0 + Id − E1)−1 ∈ Hd(C). (4.8)

Direct computation gives

(P−1
0 E1 + Id − E1)[(E1 − Id)P−1

0 + E1]

= [P−1
0 (E1 − Id) + E1](E1P

−1
0 + Id − E1).

Since (P−1
0 E1 + Id − E1) and (E1P

−1
0 + Id − E1) are invertible, we have

[(E1 − Id)P−1
0 + E1](E1P

−1
0 + Id − E1)−1

= (P−1
0 E1 + Id − E1)−1[P−1

0 (E1 − Id) + E1],

which yields (4.8). �

Define

Bk := {A ∈ BC | r0(D(A)) = k}, 0 � k � 2d, (4.9)

B(r0,r+,r−)
K := {A ∈ OC

K | r0 = r0(SD
K(A)), r± = r±(SD

K(A))} (4.10)

for nonnegative integers r0, r± with r0 + r− + r+ = d + r. Equation (4.9) gives the
2d + 1 layers in BC, while (4.10) divides OC

K into different areas. Theorem 4.4 below
indicates that the n-th eigenvalue exhibits the same jump phenomena in any given
area. By lemma 3.4, we have the following result.

Lemma 4.2. �1(σ(ωωω,A)) = Nd − k for A ∈ Bk, and �1(σ(ωωω,A)) = Nd − r0 for A ∈
B(r0,r+,r−)

K .

Lemma 4.3. Let A ∈ B(r0
1,r+

1 ,r−
1 )

K . Then

U (r0,r+,r−)
ε := Uε ∩ B(r0,r+,r−)

K

with Uε = {B ∈ OC

K : ‖S(B) − S(A)‖M2d
< ε} is path connected for any r0 � r0

1,
r± � r±1 satisfying r0 + r+ + r− = d + r, and ε > 0 sufficiently small.

Proof. The proof is similar to lemma 7.2 in [8]. �
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We are now in a position to give the complete characterization of jump
phenomena of the n-th eigenvalue on the boundary conditions.

Theorem 4.4. Fix ωωω ∈ ΩC

N .

(1) Let 0 � k � 2d. Then the restriction of λn to Bk is continuous for any 1 �
n � Nd − k.

(2) Consider the restriction of λn to OC

K , where K ⊂ {1, . . . , 2d}. Let 0 � r0 <

r0
1 � d + r and r± � r±1 . Then for any A ∈ B(r0

1 ,r+
1 ,r−

1 )
K , we have

lim
B(r0,r+,r−)

K �B→A

λn(B) = −∞, 1 � n � r+ − r+
1 , (4.11)

lim
B(r0,r+,r−)

K �B→A

λn(B) = λn−(r+−r+
1 )(A),

r+ − r+
1 < n � Nd − r0 − (r− − r−1 ), (4.12)

lim
B(r0,r+,r−)

K �B→A

λn(B) = +∞, Nd − r0 − (r− − r−1 ) < n � Nd − r0.

(4.13)

Consequently, the jump set is ∪1�k�2dBk.

Proof. (1) is a direct consequence of lemmas 3.13 and 4.2. Now, we prove
(2). Note that �1(σ(ωωω,A)) = Nd − r0

1 by lemma 4.2. Choose c1, c2 ∈ R such
that �1(σ(ωωω,A) ∩ (c1, c2)) = Nd − r0

1. By lemma 3.5, there exists ε > 0 such
that for all B ∈ Uε defined in lemma 4.3, we have �1(σ(ωωω,B) ∩ (c1, c2)) =
Nd − r0

1 and c1, c2 /∈ σ(ωωω,B). It follows from lemma 4.3 that U (r0,r+,r−)
ε is

path connected. By lemma 4.2, �1(σ(ωωω,B)) = Nd − r0 for B ∈ U (r0,r+,r−)
ε ,

and thus �1(σ(ωωω,B) ∩ ((−∞, c1) ∪ (c2,+∞))) = r0
1 − r0. Let σ(ωωω,B) ∩ ((−∞, c1) ∪

(c2,+∞)) := {λ̂1(B) � · · · � λ̂r0
1−r0(B)} for B ∈ U (r0,r+,r−)

ε . By lemma 3.15 (1),

either λ̂n(U (r0,r+,r−)
ε ) ⊂ (−∞, c1) or λ̂n(U (r0,r+,r−)

ε ) ⊂ (c2,+∞) for all 1 � n �
r0
1 − r0. Then we divide our proof in two steps.
Step 1. We show that

lim
B(r0,r+,r−)

K �B→A

λn(B) = −∞, 1 � n � r+ − r+
1 , (4.14)

lim
B(r0,r+,r−)

K �B→A

λn(B) = λn−(r+−r+
1 )(A), r+ − r+

1 < n � Nd − r0, (4.15)

for r+ > r+
1 , r− = r−1 ; and

lim
B(r0,r+,r−)

K �B→A

λn(B) = λn(A), 1 � n � (Nd − r0) − (r− − r−1 ), (4.16)

lim
B(r0,r+,r−)

K �B→A

λn(B) = +∞, (Nd − r0) − (r− − r−1 ) < n � Nd − r0 (4.17)

for r+ = r+
1 , r− > r−1 .
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Consider r+ > r+
1 and r− = r−1 . In this case, r0

1 − r0 = r+ − r+
1 . Note that there

exists a unitary matrix M ∈ Md+r such that

SD
K(A) = M

⎛
⎝M+

M−
0r0

1

⎞
⎠M∗,

where M+ = diag{μ1, . . . , μr+
1
} with μi > 0, 1 � i � r+

1 , and M− = diag{ν1, . . . ,

νr−
1
} with νj < 0, 1 � j � r−1 . Recall that S = S(A). If K2 �= ∅, we define Bt =

[S(Bt) | I2d]EK with

(sij(Bt))i,j∈{1,...,d,k1+d,...,kr+d} (4.18)

=
(

S1 S2E0

E∗
0S∗

2 E∗
0S3E0

)
+ M

⎛
⎝0r+

1 +r−
1

tIr+−r+
1

0r0

⎞
⎠M∗,

t � 0 is sufficiently small, and sij(Bt) = sij if i ∈ {d + 1, . . . , 2d} \ K2 or j ∈ {d +
1, . . . , 2d} \ K2. If K2 = ∅, we only modify (4.18) as

(sij(Bt))i,j∈{1,...,d} = S1 + M

⎛
⎝0r+

1 +r−
1

tIr+−r+
1

0r0

⎞
⎠M∗

in the definition of Bt. Then B0 = A,

SD
K(Bt) = M

⎛
⎜⎜⎝

M+

M−
tIr+−r+

1

0r0

⎞
⎟⎟⎠M∗, t > 0,

and thus r0(SD
K(Bt)) = r0, r±(SD

K(Bt)) = r±, which gives Bt ∈ U (r0,r+,r−)
ε . More-

over, �1(σ(ωωω,Bt)) = Nd − r0 for t > 0, and �1(σ(ωωω,B0)) = Nd − r0
1. It follows from

lemma 3.13 that for any fixed 1 � n � Nd − r0, λn(B·) is locally a continuous
eigenvalue branch for t > 0. Since

SD
K(Bt2) − SD

K(Bt1) = M

⎛
⎝0r+

1 +r−
1

(t2 − t1)Ir+−r+
1

0r0

⎞
⎠M∗ (4.19)

is a positive semi-definite matrix, we get by corollary 3.12 that λn(Bt1) �
λn(Bt2) with 0 < t1 < t2 for all 1 � n � Nd − r0. Hence, by lemma 3.16 (4),
limt→0+ λn(Bt) = −∞, 1 � n � r+ − r+

1 . Therefore, there exists t0 > 0 such that
Bt0 ∈ U (r0,r+,r−)

ε and λn(Bt0) < c1, 1 � n � r+ − r+
1 , which yields that λ̂n(Bt0) =

λn(Bt0). According to lemma 3.15 (1), λ̂n(U (r0,r+,r−)
ε ) = λn(U (r0,r+,r−)

ε ) ⊂
(−∞, c1), 1 � n � r+ − r+

1 , and (4.14) holds. Thanks to lemma 3.14, we get (4.15).
Consider r+ = r+

1 and r− > r−1 . Since (4.16)–(4.17) can be shown in a similar
way, we omit the details.
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Step 2. Show that (4.11)–(4.13) hold for r± > r±1 .
In this case, r0

1 − r0 = (r+ − r+
1 ) + (r− − r−1 ). It follows from (4.14) and (4.17)

that

lim
B(r0

1−(r+−r
+
1 ),r+,r

−
1 )

K �B→A

λn(B) = −∞, 1 � n � r+ − r+
1 ,

lim
B(r0

1−(r−−r
−
1 ),r

+
1 ,r−)

K �B→A

λn(B) = +∞, Nd − r0
1 < n � Nd − r0

1 + (r− − r−1 ).

This implies that λn(B̃1) ∈ (−∞, c1) with 1 � n � r+ − r+
1 , and λn(B̃2) ∈

(c2,+∞) with Nd − r0
1 < n � Nd − r0

1 + (r− − r−1 ) for any fixed B̃1 ∈
U (r0

1−(r+−r+
1 ),r+,r−

1 )
ε and B̃2 ∈ U (r0

1−(r−−r−
1 ),r+

1 ,r−)
ε .

Note that (r0, r+, r−) = (r0
1 − (r+ − r+

1 ) − (r− − r−1 ), r+, r−1 + (r− − r−1 )). Then
we infer from (4.16) that

lim
B(r0,r+,r−)

K �B→B̃1

λn(B) = λn(B̃1), 1 � n � Nd − r0 − (r− − r−1 ).

Since N � 2, we get that

Nd − r0 − (r− − r−1 ) � r+ − r+
1 . (4.20)

Therefore, there exists B̃3 ∈ U (r0,r+,r−)
ε such that λn(B̃3) ∈ (−∞, c1) with 1 � n �

r+ − r+
1 .

On the other hand, (r0, r+, r−) = (r0
1 − (r+ − r+

1 ) − (r− − r−1 ), r+
1 + (r+ −

r+
1 ), r−). Thus we get by (4.15) that

lim
B(r0,r+,r−)

K �B→B̃2

λn(B) = λn−(r+−r+
1 )(B̃2), r+ − r+

1 < n � Nd − r0,

which, along with (4.20), yields that there exists B̃4 ∈ U (r0,r+,r−)
ε such that

λn(B̃4) ∈ (c2,+∞) with Nd − r0 − (r− − r−1 ) < n � Nd − r0. Therefore, we have
shown

�1(σ(ωωω, B̃3) ∩ (−∞, c1)) = r+ − r+
1 , �1(σ(ωωω, B̃4) ∩ (c2,+∞)) = r− − r−1 . (4.21)

Note that U (r0,r+,r−)
ε is path connected and �1(σ(ωωω,B) ∩ (c1, c2)) = Nd − r0

1 =
Nd − r0 − (r+ − r+

1 ) − (r− − r−1 ) for all B ∈ U (r0,r+,r−)
ε . Thus we infer from (4.21)

and lemma 3.15 (1) that λn(U (r0,r+,r−)
ε ) ⊂ (−∞, c1) for all 1 � n � r+ − r+

1 , and
λn(U (r0,r+,r−)

ε ) ⊂ (c2,+∞) for all Nd − r0 − (r− − r−1 ) < n � Nd − r0. Then it fol-
lows from lemma 3.15 (2) that (4.11) and (4.13) hold. This, along with lemma 3.14,
implies that (4.12) holds. This completes the proof. �

Jump phenomena of the n-th eigenvalue on the Sturm–Liouville equations
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4.2. Jump phenomena of the n-th eigenvalue on the Sturm–Liouville
equations

Fix a boundary condition A = [(A1, A2)|(B1, B2)] = [S | I2d]EK ∈ OC

K . In this
subsection, we always assume that one of the following non-degenerate conditions
holds:

R and E∗
0 (S∗

2E1R
−1S2 − S3)E0 are invertible if K2 �= ∅, (4.22)

R is invertible if K2 = ∅, (4.23)

where E0 is defined in (4.3) and R := S1E1 + E1 − Id. In particular, the assump-
tion holds for any A ∈ OC

K when K1 = {1, . . . , d} and K2 = ∅. For any ωωω =
(P−1, Q,W ) ∈ ΩC

N , we have by (4.1) that

(A1P
−1
0 + B1, B2) =

(
RP−1

0 + S1(Id − E1) + E1 S2(Id − E2)
S∗

2 (E1P
−1
0 + Id − E1) S3(Id − E2) + E2

)
.

Then (
R−1 0

S∗
2E1R

−1 −Id

)
(A1P

−1
0 + B1, B2) (4.24)

=

⎛
⎝P−1

0 + R−1(S1(Id − E1) + E1) R−1S2(Id − E2)
S∗

2 [E1 − Id + E1R
−1 (S∗

2E1R
−1S2 − S3)

(S1(Id − E1) + E1)] (Id − E2) − E2

⎞
⎠ .

Next, we analyse the partitioned structure of the matrix above.

Lemma 4.5. [E1 − Id + E1R
−1(S1(Id − E1) + E1)]R∗ = Id and S∗

2E1R
−1S2 −

S3 ∈ Hd(C).

Proof. Direct computation gives

[E1 − Id + E1R
−1(S1(Id − E1) + E1)]R∗ = Id − E1 + E1R

−1(E1S1 − S1 + S1E1).

Since

E1R
−1 = (E1S1 + E1 − Id)−1E1, (4.25)

we have

Id − E1 + E1R
−1(E1S1 − S1 + S1E1)

= Id − E1 + (E1S1 + E1 − Id)−1E1(E1S1 − S1 + S1E1)

= Id − E1 + (E1S1 + E1 − Id)−1E1S1E1

= Id − E1 + (E1S1 + E1 − Id)−1(E1S1 + E1 − Id)E1 = Id.

S∗
2E1R

−1S2 − S3 ∈ Hd(C) follows directly from (4.25). �
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By lemma 4.5, we have S∗
2 [E1 − Id + E1R

−1(S1(Id − E1) + E1)] = (R−1S2)∗. In
the case that K2 �= ∅, we define

T̂1 := R−1S2E0, T̂2 := E∗
0 (S∗

2E1R
−1S2 − S3)E0.

Then by assumption (4.22) and lemma 4.5, T̂2 ∈ Hr(C) is invertible. Direct
computation implies that

(
Id −T̂1T̂

−1
2

0 T̂−1
2

)(
P−1

0 + R−1(S1(Id − E1) + E1) T̂1

T̂ ∗
1 T̂2

)(
Id 0 − T̂−1

2 T̂ ∗
1 Ir

)
(4.26)

=
(

P−1
0 + R−1(S1(Id − E1) + E1) − T̂1T̂

−1
2 T̂ ∗

1 0
0 Ir

)
.

In the case that K2 = ∅, we have E2 = Id. Then the next transformation after (4.24)
is

(
P−1

0 + R−1(S1(Id − E1) + E1) 0
R̃ −Id

)(
Id 0
R̃ −Id

)
(4.27)

=
(

P−1
0 + R−1(S1(Id − E1) + E1) 0

0 Id

)
,

where R̃ = S∗
2 [E1 − Id + E1R

−1(S1(Id − E1) + E1)]. For any ωωω ∈ ΩC

N , we define

T (ωωω) := P−1
0 + R−1(S1(Id − E1) + E1) − T̂1T̂

−1
2 T̂ ∗

1 if K2 �= ∅, (4.28)

T (ωωω) := P−1
0 + R−1(S1(Id − E1) + E1) if K2= ∅, (4.29)

and F (ωωω) := (A1P
−1
0 + B1, B2) in both cases. Then rankF (ωωω) = rankT (ωωω) + d.

Moreover, we have the following result.

Lemma 4.6. Let ωωω ∈ ΩC

N . Then T (ωωω) ∈ Hd(C).

Proof. Since

(S1 − S1E1 + E1)R∗ = S1E1 + E1S1 − S1 = R(S1 − E1S1 + E1),

and R is invertible, we have

R−1(S1 − S1E1 + E1) = (S1 − E1S1 + E1)(R∗)−1.

This implies that P−1
0 + R−1(S1(Id − E1) + E1) ∈ Hd(C). Since T̂2 ∈ Hr(C) when

K2 �= ∅, we get T (ωωω) ∈ Hd(C). �
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Let

l1 = max
ωωω∈ΩC

N

r0(F (ωωω)).

Then l1 � d. Define

Ek := {ωωω ∈ ΩC

N | r0(F (ωωω)) = k}, 0 � k � l1, (4.30)

E(r0,r+,r−) := {ωωω ∈ ΩC

N | r0 = r0(T (ωωω)), r± = r±(T (ωωω))}, (4.31)

for attainable nonnegative integers r0, r+, r− with r0 + r+ + r− = d. The l1 + 1
layers of ΩC

N are given in (4.30), while the areas’ division is provided in (4.31). Note
here that not all the nonnegative integers 0 � r0, r± � d satisfying r0 + r+ + r− =
d can be achievable in general, since P−1

0 ∈ Pd(C) while it is not necessary that
P−1

0 − T (ωωω) ∈ Pd(C). Similarly, it is possible that l1 < d. The following result is a
direct consequence of lemma 3.4.

Lemma 4.7. �1(σ(ωωω,A)) = Nd − k for any ωωω ∈ Ek, and �1(σ(ωωω,A)) = Nd − r0 for
any ωωω ∈ E(r0,r+,r−).

Note that the transformations (4.24), (4.26) and (4.27) are independent of ωωω ∈
ΩC

N . Moreover, the following result holds by the construction of T (ωωω) and a similar
argument to that in the proof of lemma 7.2 in [8].

Lemma 4.8. Let ωωω ∈ E(r0
1 ,r+

1 ,r−
1 ). Then V(r0,r+,r−)

ε := {σσσ ∈ ΩC

N : ‖σσσ −ωωω‖
C(3N+1)d2 <

ε} ∩ E(r0,r+,r−) is path connected for any 0 � r0 � r0
1, r± � r±1 satisfying r0 + r+ +

r− = d, and ε > 0 sufficiently small.

Theorem 4.9. Fix A ∈ OC

K .

(1) Let 0 � k � l1. Then the restriction of λn to Ek is continuous for any 1 �
n � Nd − k.

(2) Consider the restriction of λn to ΩC

N . Let 0 � r0 < r0
1 � l1 and r± � r±1 . Then

for any ωωω ∈ E(r0
1 ,r+

1 ,r−
1 ), we have

lim
E(r0,r+,r−)�σσσ→ωωω

λn(σσσ) = −∞, 1 � n � r− − r−1 , (4.32)

lim
E(r0,r+,r−)�σσσ→ωωω

λn(σσσ) = λn−(r−−r−
1 )(ωωω),

r− − r−1 < n � Nd − r0 − (r+ − r+
1 ), (4.33)

lim
E(r0,r+,r−)�σσσ→ωωω

λn(σσσ) = +∞, Nd − r0 − (r+ − r+
1 ) < n � Nd − r0.

(4.34)

Consequently, the jump set is ∪1�k�l1Ek.

Proof. By lemma 4.7, �1(σ(ωωω,A)) = Nd − k for any ωωω ∈ Ek. It follows from
lemma 3.13 that (1) holds. Choose c1, c2 ∈ R such that �1(σ(ωωω,A) ∩ (c1, c2)) =
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Nd − r0
1. Then lemmas 3.5, 3.15 (1) and 4.8 ensure that for σσσ ∈ V(r0,r+,r−)

ε with
ε > 0 small enough, all the eigenvalues of (σσσ,A) outside [c1, c2], denoted by λ̃1(σσσ) �
· · · � λ̃r0

1−r0(σσσ), satisfy that either λ̃n(V(r0,r+,r−)
ε ) ⊂ (−∞, c1) or λ̃n(V(r0,r+,r−)

ε ) ⊂
(c2,+∞), 1 � n � r0

1 − r0. Then we divide our proof in two steps.
Step 1. We show that

lim
E(r0,r+,r−)�σσσ→ωωω

λn(σσσ) = −∞, 1 � n � r− − r−1 , (4.35)

lim
E(r0,r+,r−)�σσσ→ωωω

λn(σσσ) =λn−(r−−r−
1 )(ωωω), r− − r−1 < n � Nd − r0 (4.36)

for r− > r−1 , r+ = r+
1 ; and

lim
E(r0,r+,r−)�σσσ→ωωω

λn(σσσ) = λn(ωωω), 1 � n � (Nd − r0) − (r+ − r+
1 ), (4.37)

lim
E(r0,r+,r−)�σσσ→ωωω

λn(σσσ) = +∞, (Nd − r0) − (r+ − r+
1 ) < n � Nd − r0 (4.38)

for r− = r−1 , r+ > r+
1 .

We only prove (4.35)–(4.36), since (4.37)–(4.38) can be proved similarly. Let
L ∈ Md(C) be a unitary matrix such that T (ωωω) = Ldiag{μ̃1, . . . , μ̃d}L∗, where μ̃i,
1 � i � d, are the eigenvalues of T (ωωω) and μ̃1 = · · · = μ̃r0

1
= 0. Recall that P−1

0 (ωωω)
is used to indicate its dependence on ωωω, while all the components of ωωω except P−1

0

are fixed. Define

P−1
0 (σσσt) = P−1

0 (ωωω) + L

(
tIr0

1−r0

0d−(r0
1−r0)

)
L∗ (4.39)

with t � 0 small enough. Then σσσ0 = ωωω and σσσt ∈ V(r0,r+,r−)
ε , t < 0. Since P−1

0 (σσσt2) −
P−1

0 (σσσt1) is a positive semi-definite matrix for t1 < t2 < 0, we infer from
corollary 3.10 and lemma 3.13 that λn(σσσt1) � λn(σσσt2) for each 1 � n � Nd − r0.
Hence, by lemma 3.16 (1), limt→0− λn(σσσt) = −∞, 1 � n � r− − r−1 . Then we get by
lemma 3.15 that λ̃n(V(r0,r+,r−)

ε ) = λn(V(r0,r+,r−)
ε ) ⊂ (−∞, c1), 1 � n � r− − r−1 ,

satisfy (4.35). This, along with lemma 3.14, yields (4.36).
Step 2. Show that (4.32)–(4.34) hold for r± > r±1 .
By (4.35) and (4.38), we have λn(σ̃σσ1) ∈ (−∞, c1) with 1 � n � r− − r−1 , and

λn(σ̃σσ2) ∈ (c2,+∞) with Nd − r0
1 < n � Nd − r0

1 + (r+ − r+
1 ) for any fixed σ̃σσ1 ∈

V(r0
1−(r−−r−

1 ),r+
1 ,r−)

ε and σ̃σσ2 ∈ V(r0
1−(r+−r+

1 ),r+,r−
1 )

ε . Then we infer from (4.36)–(4.37)
that

lim
E(r0,r+,r−)�σσσ→σ̃σσ1

λn(σσσ) = λn(σ̃σσ1), 1 � n � Nd − r0 − (r+ − r+
1 ),

lim
E(r0,r+,r−)�σσσ→σ̃σσ2

λn(σσσ) = λn−(r−−r−
1 )(σ̃σσ2), r− − r−1 < n � Nd − r0.

Since Nd − r0 − (r+ − r+
1 ) � r− − r−1 , we obtain that there exists σ̃σσ3 ∈ V(r0,r+,r−)

ε

such that λn(σ̃σσ3) ∈ (−∞, c1) with 1 � n � r− − r−1 , and there exists σ̃σσ4 ∈
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V(r0,r+,r−)
ε such that λn(σ̃σσ4) ∈ (c2,+∞) with Nd − r0 − (r+ − r+

1 ) < n � Nd − r0.
This implies that

�1(σ(σσσ,A) ∩ (−∞, c1)) = r− − r−1 , �1(σ(σσσ,A) ∩ (c2,+∞)) = r+ − r+
1

for all σσσ ∈ V(r0,r+,r−)
ε . Then lemma 3.15 (2) ensures that (4.32) and (4.34) hold.

Finally, (4.33) is obtained by lemma 3.14. �

5. Applications to d-dimensional Sturm–Liouville problems of Atkinson
type

Consider the d-dimensional Sturm–Liouville problem of Atkinson type with d � 1.
The continuous Sturm–Liouville equation is

− (P̂ y′)′ + Q̂y = λŴy on (a, b), (5.1)

where P̂ , Q̂ and Ŵ are d × d Hermitian matrix-valued functions on [a, b], and

P̂−1, Q̂, Ŵ ∈ L((a, b), Cd×d).

The self-adjoint boundary condition is given by

A

( −y(a)
y(b)

)
+ B

(
(P̂ y′)(a)
(P̂ y′)(b)

)
= 0, (5.2)

where A and B are 2d × 2d complex matrices, where A and B satisfy (1.6). Let
u = y and v = P̂ y′. Then (5.1) is transformed to{

u′ = P̂−1v,

v′ = (Q̂ − λŴ )u,
(5.3)

on (a, b). Equation (5.1) is said to be of Atkinson type if there exists a partition of
the interval (a, b),

a = a0 < b0 < a1 < b1 < · · · < aN < bN = b

for some N > 1 such that

P̂−1 ≡ 0 on [ai, bi], Ŵi :=
∫ bi

ai

Ŵ (s)ds ∈ Pd(C), 0 � i � N, (5.4)

and

Q̂ ≡ Ŵ ≡ 0 on [bj−1, aj ], P̂−1
j :=

∫ aj

bj−1

P̂−1(s)ds is invertible , 1 � j � N.

(5.5)
Note that (5.1) is a formal equation due to the definition of P̂−1 in (5.4). The
conditions (5.4)–(5.5) for Atkinson type should be understood in the sense of (5.3),
where P̂−1 is regarded as a notation, see also (1.3) and (2.2) in [12], or (1.2) and
(H4) in [15]. A d-dimensional Sturm–Liouville problem is said to be of Atkinson
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type if it consists of (5.1) of Atkinson type and a self-adjoint boundary condition.
A 1-dimensional case has been studied in [1, 4, 12, 15]. In this section, we always
assume that (5.1)–(5.2) is of Atkinson type. The space of Sturm–Liouville equations
of Atkinson type is

Ω̂ :=
{(

P̂−1, Q̂, Ŵ
)
∈ (L((a, b), Cd×d))3 : (5.4)–(5.5) hold

}

with topology induced by (L((a, b), Cd×d))3. ω̂̂ω̂ω = (P̂−1, Q̂, Ŵ ) is used for an element
in Ω̂. Note that the space of self-adjoint boundary conditions is also BC defined by
(2.1). Set

Q̂i :=
∫ bi

ai

Q̂(s)ds, 0 � i � N.

It follows from (5.4)–(5.5) that if (u, v) is a solution of (5.3), then u(t) ≡ ui ∈ Md×1

is a constant vector on [ai, bi], 0 � i � N , and v(t) ≡ vj ∈ Md×1 is a constant vector
on [bj−1, aj ], 1 � j � N . Furthermore, we define

v0 = v(a), vN+1 = v(b), u−1 = u0 − v0, uN+1 = uN + vN+1. (5.6)

We construct a d-dimensional discrete Sturm–Liouville problem as follows:

−∇(P̂i+1Δui) + Q̂iui = λŴiui, 0 � i � N, (5.7)

where P̂N+1 = P̂0 = Id, and a boundary condition

A

( −u0

uN

)
+ B

(
Δu−1

ΔuN

)
= 0, (5.8)

where A and B are given in (5.2). By writing A and B into the form (3.2), direct
computation implies that (5.8) is equivalent to the standard discrete boundary
condition:

(A1, A2)
( −u−1

uN

)
+ (B1 − A1, B2)

(
Δu−1

ΔuN

)
= 0. (5.9)

Now we show that (5.1)–(5.2) is equivalent to the constructed discrete
Sturm–Liouville problem above.

Lemma 5.1.

(1) (5.7)–(5.8) is a self-adjoint discrete Sturm–Liouville problem.

(2) (5.1)–(5.2)) is equivalent to (5.7)–(5.8).
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Proof. Firstly, we show that (1) holds. Since A and B satisfy (1.6), we have

A1B
∗
1 + A2B

∗
2 = B1A

∗
1 + B2A

∗
2, and rank (A,B) = 2d.

Thus

(A1, A2)
(

B∗
1 − A∗

1

mathbfB∗
2

)
= A1B

∗
1 − A1A

∗
1 + A2B

∗
2

= B1A
∗
1 − A1A

∗
1 + B2A

∗
2 = (B1 − A1, B2)

(
A∗

1

mathbfA∗
2

)
,

and

rank(A1, A2, B1 − A1, B2) = rank

⎛
⎜⎜⎝(A,B)

⎛
⎜⎜⎝

Id −Id

Id

Id

Id

⎞
⎟⎟⎠
⎞
⎟⎟⎠ = 2d.

It follows that (5.9) is a self-adjoint boundary condition. Since P̂j+1, Q̂i, Ŵi are
Hermitian, P̂j+1 is invertible, and Ŵi ∈ Pd(C) for 0 � i � N and −1 � j � N , we
have

τττ :=
(
{P̂−1

j }N+1
j=0 , {Q̂i}N

i=0, {Ŵi}N
i=0

)
∈ ΩC

N+1.

Hence, (1) holds.
Next, we prove (2). It suffices to show that (5.3) with (5.2) is equivalent to

(5.7)–(5.8). Let (u, v) be a solution of (5.3). Since v ≡ vi is a constant vector on
[bi−1, ai], we have

ui − ui−1 = u(ai) − u(bi−1) =
∫ ai

bi−1

u′(s)ds =
∫ ai

bi−1

P̂−1(s)v(s)ds = P̂−1
i vi

for any 1 � i � N , which, together with (5.6) and the fact that P̂N+1 = P̂0 = Id,
yields that

P̂i(ui − ui−1) = vi, 0 � i � N + 1. (5.10)

Since u ≡ uj is a constant vector on [aj , bj ], we obtain

vj+1 − vj = v(bj) − v(aj) (5.11)

=
∫ bj

aj

v′(s)ds =
∫ bj

aj

(Q̂(s) − λŴ (s))u(s)ds = (Q̂j − λŴj)uj

for any 0 � j � N . Then (5.7) is obtained by combining (5.10)–(5.11).
Conversely, let {ui}N+1

i=−1 be a solution of (5.7) and define vi = P̂i(ui − ui−1) for
0 � i � N + 1. Let u(t) = ui for all t ∈ [ai, bi] and 0 � i � N , v(t) = vj for all t ∈

https://doi.org/10.1017/prm.2022.9 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.9


Jump phenomena of the n-th eigenvalue of discrete Sturm–Liouville problems 645

[bj−1, aj ] and 1 � j � N , v(a) = v0, and

u(t) = u(bj−1) +
∫ t

bj−1

P̂−1(s)vjds, t ∈ [bj−1, aj ],

v(t) = v(ai) +
∫ t

ai

(Q̂(s) − λŴ (s))uids, t ∈ [ai, bi].

Then (u, v) is a solution of (5.3).
Moreover, y(a) = u0, y(b) = uN , (P̂ y′)(a) = v(a) = u0 − u−1 = Δu−1 and

(P̂ y′)(b) = v(b) = uN+1 − uN = ΔuN . Thus (5.2) is equivalent to (5.8). �

By transforming the Sturm–Liouville problem of Atkinson type to the discrete
case, we can now determine the number of eigenvalues in the following lemma,
which generalizes theorems 2.1 and 3.1 in [15] for 1-dimension to any dimension.

Lemma 5.2. Let (ω̂̂ω̂ω,A) ∈ Ω̂ × BC with A given in (3.2). Then the eigenvalues of
(ω̂̂ω̂ω,A), including multiplicities, are the same as those of (τττ ,A) = (τττ ,C), and

�1(σ(ω̂̂ω̂ω,A)) = �1(σ(τττ ,A)) = �1(σ(τττ ,C)) = (N − 1)d + rank(B),

where τττ ∈ ΩC

N+1 is the transformed discrete Sturm–Liouville equation by ω̂̂ω̂ω, and

C = [(A1, A2)|(B1 − A1, B2)].

Remark 5.3. Note that here A is under the basis (−u0, uN ,Δu−1,ΔuN ) when we
write (τττ ,A), while C is under the standard basis (−u−1, uN ,Δu−1,ΔuN ) when we
write (τττ ,C). In this sense, (τττ ,A) = (τττ ,C).

Proof. By lemma 5.1 (2), (ω̂̂ω̂ω,A) is equivalent to (τττ ,A) = (τττ ,C), and P̂0 = Id. Then
applying lemma 3.4 to (τττ ,C), we have

�1(σ(ω̂̂ω̂ω,A)) = �1(σ(τττ ,C))

= ((N + 1) − 2)d + rank(A1P̂
−1
0 + (B1 − A1), B2) = (N − 1)d + rank(B1, B2).

This completes the proof. �

Then we study jump phenomena of the n-th eigenvalue of d-dimensional
Sturm–Liouville problems of Atkinson type. We first claim in proposition 5.4 below
that there is no singularity of the n-th eigenvalue on the equations. In fact, for a
fixed A ∈ BC, we infer from lemma 5.2 that �1(σ(ω̂̂ω̂ω,A)) is independent of ω̂̂ω̂ω ∈ Ω̂.
This, together with lemma 3.13, implies the following result.

Proposition 5.4. Fix A = [A | B] ∈ BC. Then the n-th eigenvalue is continuous
on the whole space of Sturm–Liouville equations of Atkinson type Ω̂ for all 1 � n �
�1(σ(ω̂̂ω̂ω,A)) = (N − 1)d + rank(B).

Next, we consider jump phenomena of the n-th eigenvalue on the boundary con-
ditions. Lemma 5.2 indicates that it suffices to study jump phenomena of the n-th
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eigenvalue of (τττ ,C) = (τττ ,A) for the fixed τττ . The coupled term B1 − A1 in the stan-
dard boundary condition C makes it hard to apply theorem 4.4 to (τττ ,C) directly.
We shall apply the method developed in § 3 and 4 to the discrete Sturm–Liouville
problem (τττ ,A) and provide a direct proof here. In order to study jump phenom-
ena in a certain direction, we need the derivative formula of a continuous simple
eigenvalue branch.

Lemma 5.5. Fix τττ ∈ ΩC

N+1. Let λ∗ be a simple eigenvalue of (τττ ,A) for A ∈ OC

K ,
u ∈ l[−1, N + 1] be a normalized eigenfunction for λ∗, and Λ be the continuous
simple eigenvalue branch through λ∗. Then we have the following derivative formula

dΛ|A(H) = Z∗E∗
K,1HEK,1Z

for H ∈ H2d(C), where

ZT = (−uT
0 , uT

N , (Δu−1)T , (ΔuN )T ).

Remark 5.6. Lemma 3.11 is unable to be directly applied here due to the different
basis. Note carefully that Z in lemma 5.5 is different from Y in lemma 3.11.

Proof. Recall that there exists S ∈ H2d(C) such that A = [S | I2d]EK . Let B =
[S + H | I2d]EK with H ∈ H2d(C). Then by lemma 3.7, there exists an eigenfunc-
tion ũ = {ũi}N+1

i=−1 for Λ(B) such that ũ → u in C
(N+2)d as B → A. Note that ũ

and u satisfy

−∇(P̂i+1Δũi) + Q̂iũi = Λ(B)Ŵiũi,

−∇(P̂i+1Δui) + Q̂iui = Λ(A)Ŵiui, 0 � i � N,

and thus

(Λ(B) − Λ(A))
N∑

i=0

ũ∗
i Ŵiui = �u−1, ũ−1� − �uN , ũN�

= ũ∗
0u−1 − ũ∗

−1u0 − �uN , ũN�
= (Δũ−1)∗u0 − ũ∗

0(Δu−1) − �uN , ũN�,

where �ui, ũi� = (Δũi)∗P̂i+1ui − ũ∗
i P̂i+1Δui. A and B tell us that SEK,1Z +

EK,2Z = 0 and (S + H)EK,1Z̃ + EK,2Z̃ = 0. Then we infer from (2.5) that

(Λ(B) − Λ(A))
N∑

i=0

ũ∗
i Ŵiui = Z̃∗E∗

KJ∗
2dEKZ = Z̃∗E∗

K,1HEK,1Z.

This completes the proof. �

As a consequence, we get the following conclusion.

Corollary 5.7. Let Λ be a continuous eigenvalue branch defined on U ⊂ OC

K .
Then Λ(A) � Λ(B) if A,B ∈ U and S(B) − S(A) is positive semi-definite.
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Let the k-th layer in BC be defined as

Σ̂k := {A ∈ BC | r0(B) = k}, 0 � k � 2d.

Then the following result is a direct consequence of lemma 5.2.

Corollary 5.8. Fix ω̂̂ω̂ω ∈ Ω̂. Then

(1) �1(σ(ω̂̂ω̂ω,A)) = (N + 1)d − k for all A ∈ Σ̂k.

(2) �1(σ(ω̂̂ω̂ω,A)) = (N + 1)d for all A ∈ OC

∅ .

For a nonempty subset K = {n1, . . . , nm0} ⊂ {1, . . . , 2d}, we define Ê0 =
(ên1 , . . . , ênm0

), and

SA
K(A) = Ê∗

0S(A)Ê0, (5.12)

where A ∈ OC

K , and êi is the i-th column of I2d. The divided area is defined by

J
(r0,r+,r−)
K := {A ∈ OC

K |r0(SA
K(A)) = r0, r±(SA

K(A)) = r±}
for three nonnegative integers r0, r+ and r− satisfying r0 + r+ + r− = m0. Then
we are ready to provide the complete characterization of jump phenomena of the
n-th eigenvalue for the Atkinson type.

Theorem 5.9. Fix ω̂̂ω̂ω ∈ Ω̂.

(1) Let 0 � k � 2d. Then the restriction of λn to Σ̂k is continuous for any 1 �
n � (N + 1)d − k. Moreover, the restriction of λn to OC

∅ is continuous for
any 1 � n � (N + 1)d.

(2) Consider the restriction of λn to OC

K , where ∅ �= K ⊂ {1, . . . , 2d}. Let 0 �
r0 < r0

1 � �(K) and r± � r±1 . Then for any A ∈ J
(r0

1 ,r+
1 ,r−

1 )
K , we have

lim
J

(r0,r+,r−)
K �B→A

λn(B) = −∞, 1 � n � r+ − r+
1 , (5.13)

lim
J

(r0,r+,r−)
K �B→A

λn(B) = λn−(r+−r+
1 )(A),

r+ − r+
1 < n � (N + 1)d − r0 − (r− − r−1 ), (5.14)

lim
J

(r0,r+,r−)
K �B→A

λn(B) = +∞,

(N + 1)d − r0 − (r− − r−1 ) < n � (N + 1)d − r0. (5.15)

Consequently, the jump set is ∪1�k�2dΣ̂k.

Remark 5.10. Note that SA
K(A) is independent of the Sturm–Liouville equations

of Atkinson type, while SD
K(A) defined in (4.5)–(4.6) is indeed involved heavily with

the coefficient P−1
0 of the discrete equations.
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Proof. We study the equivalent discrete Sturm–Liouville problem (τττ ,A). (1) is
straightforward by lemma 3.13 and corollary 5.8. Next, we show that (2) holds.
Choose c1, c2 ∈ R such that �1(σ(τττ ,A) ∩ (c1, c2)) = (N + 1)d − r0

1. It follows from
lemma 3.5 that �1(σ(τττ ,B) ∩ (c1, c2)) = (N + 1)d − r0

1 with c1, c2 /∈ σ(τττ ,B) for all
B ∈ Uε, defined in lemma 4.3, and ε > 0 small enough. Lemma 7.2 in [8] implies
that Û (r0,r+,r−)

ε = Uε ∩ J
(r0,r+,r−)
K is path connected. Note that

�1(σ(τττ ,B) ∩ ((−∞, c1) ∪ (c2,+∞))) = r0
1 − r0 (5.16)

for B ∈ Û (r0,r+,r−)
ε .

We show that if r+ > r+
1 and r− = r−1 , then (4.14′)–(4.15′) hold. Similarly, if

r+ = r+
1 and r− > r−1 , then (4.16′)–(4.17′) hold. Here (4.14′)–(4.17′) are defined as

(4.14)–(4.17) with B(r0,r+,r−)
K and N replaced by J

(r0,r+,r−)
K and N + 1. Let M̂ ∈

Mm0 be the unitary matrix such that SA
K(A) = M̂diag{ν̃1, . . . , ν̃m0}M̂∗, where

m0 = �(K) and ν̃1 = · · · = ν̃r0
1

= 0. Define B̂t = [S(B̂t) | I2d]EK with

SA
K(B̂t) = SA

K(A) + M̂

(
tIr+−r+

1

0m0−(r+−r+
1 )

)
M̂∗,

t � 0 is sufficiently small, and sij(B̂t) = sij(A) if i ∈ {1, . . . , 2d} \ K or j ∈
{1, . . . , 2d} \ K. Since S(B̂t2) − S(B̂t1) is a positive semi-definite matrix for t2 >

t1 > 0, it follows from lemma 3.13 and corollary 5.7 that λn(B̂·) is non-decreasing
on t ∈ (0, ε) for each 1 � n � (N + 1)d − r0, where ε > 0 is small enough. Hence,
by lemma 3.16 (4), limt→0+ λn(B̂t) = −∞, 1 � n � r+ − r+

1 = r0
1 − r0. This, along

with lemma 3.15 and (5.16), yields that λn(Û (r0,r+,r−)
ε ) ⊂ (−∞, c1), 1 � n � r+ −

r+
1 , and (4.14′) holds. Then we get by lemma 3.14 that (4.15′) holds.
Finally, we prove (5.13)–(5.15) for r± > r±1 . It follows from (4.14′) and (4.17′)

that λn(Ã1) ∈ (−∞, c1) with 1 � n � r+ − r+
1 , and λn(Ã2) ∈ (c2,+∞) with (N +

1)d − r0
1 < n � (N + 1)d − r0

1 + (r− − r−1 ) for any fixed Ã1 ∈ Û (r0
1−(r+−r+

1 ),r+,r−
1 )

ε

and Ã2 ∈ Û (r0
1−(r−−r−

1 ),r+
1 ,r−)

ε . Furthermore, we have by (4.16′) that there
exists Ã3 ∈ Û (r0,r+,r−)

ε such that λn(Ã3) ∈ (−∞, c1) with 1 � n � r+ − r+
1 . It

follows from (4.15′) that there exists Ã4 ∈ Û (r0,r+,r−)
ε such that λn(Ã4) ∈

(c2,+∞) with r+ − r+
1 � (N + 1)d − r0 − (r− − r−1 ) < n � (N + 1)d − r0. Then

we get by lemma 3.15 (1) that λn(Û (r0,r+,r−)
ε ) ⊂ (−∞, c1) for 1 � n � r+ − r+

1 ,
and λn(Û (r0,r+,r−)

ε ) ⊂ (c2,+∞) for (N + 1)d − r0 − (r− − r−1 ) < n � (N + 1)d −
r0. Thanks to lemma 3.15 (2), we get (5.13) and (5.15). Then (5.14) is a direct
consequence of lemma 3.14. The proof is complete. �

6. Conclusions and comparisons of jump phenomena of the n-th
eigenvalue among continuous case, discrete case and Atkinson type

In this section, we compare jump phenomena of the n-th eigenvalue among the
Sturm–Liouville problems for the continuous case (1.1)–(1.2) in [8], the discrete
case (1.3)–(1.4), and the Atkinson type (5.1)–(5.2).
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(i) Comparison of jump phenomena on boundary conditions.
According to theorem 7.1 in [8], theorems 4.4 and 5.9, the jump phenomena on

the boundary conditions are determined by the constructed Hermitian matrices,
which are SC

K(A) given in (4.2) of [8] for the continuous case, SD
K(A) defined in

(4.5)–(4.6) for the discrete case, and SA
K(A) defined in (5.12) for the Atkinson type,

where A ∈ OC

K .
For the continuous case, theorem 7.1 in [8] tells us that the first mc eigenvalues

jump to −∞ as a path of boundary conditions from the lower layer of OC

K tends to a
given boundary condition in the upper layer. Here the jump number mc is exactly
the number of transitional eigenvalues (from positive to zero) of the determined
Hermitian matrices. It is further shown that this number is the Maslov index of the
path of boundary conditions in a forthcoming paper.

For the discrete case, theorem 4.4 indicates that not only the first m−
d eigenvalues

jump to −∞, but the last m+
d eigenvalues also blow up to +∞ as a path of boundary

conditions from the lower layer tends to a given boundary condition in the upper
layer. Here the jump number m−

d has the similar meaning as mc in the continuous
case, while m+

d is the number of transitional eigenvalues (from negative to zero) of
the determined Hermitian matrices.

For the Atkinson type, theorem 5.9 renders both similar jump phenomena to ±∞
with numbers m±

a as in the discrete case. However, m±
d �= m±

a in general, which is
due to the fact that the determined Hermitian matrices are different, i.e. SD

K(A) �=
SA

K(A). It is also interesting to see that the determined Hermitian matrices for
the continuous case and the Atkinson type are the same, i.e.SC

K(A) = SA
K(A). The

jump set in the Atkinson type coincides with that in the continuous case. This, in
particular, provides a direct consequence: mc = m−

a .
The determined Hermitian matrix is independent of coefficients of the

Sturm–Liouville equations for the continuous case and the Atkinson type, while
the coefficient P−1

0 involves heavily in the Hermitian matrix for the discrete case.
In addition, the order of the determined Hermitian matrix is d + �(K2) for the dis-
crete case, while it is �(K) for the continuous case and the Atkinson type. This
implies that the maximal jump number in the discrete case is always no less than
that in the continuous case and the Atkinson type.

(ii) Comparison of jump phenomena on the equations.
Based on theorem 6.1 in [8], theorem 4.9and proposition 5.4, the n-th eigenvalue

has no singularity on coefficients of the Sturm–Liouville equations for the contin-
uous case and the Atkinson type, while indeed exhibits jump phenomena when
coefficients of the Sturm–Liouville equations vary for the discrete case.

For the discrete case, theorem 4.9 also provides jump phenomena to both ±∞
with jump numbers m̃±

d as a path of equations from the lower layer of ΩC

N tends to
a given equation in the upper layer. The determined Hermitian matrix is given by
T (ωωω) defined in (4.28)–(4.29). m̃−

d is the number of transitional eigenvalues (from
negative to zero) of the determined Hermitian matrices, while m̃+

d is the number
of transitional eigenvalues (from positive to zero) of the determined Hermitian
matrices. Here the reverse direction for the transitional eigenvalues in the definitions
of m±

d and m̃±
d is essentially due to the opposite monotonicity of the continuous

eigenvalue branches, see corollaries 3.10 and 3.12.
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(iii) Comparison of the method in the proof of jump phenomena.
Compared with the continuous cases in [8] and [13], the jump set in the discrete

case is involved heavily with coefficients of the Sturm–Liouville equations. Moreover,
the finiteness of spectrum for the discrete case or the Atkinson type makes the
method for the continuous case (e.g. continuity principle in [8, 13]) invalid here.
Compared with the 1-dimensional discrete case in [22], the first difficulty is how
to divide areas in each layer of the considered space such that the n-th eigenvalue
has the same jump phenomena in a given area. We study jump phenomena by
partitioning and analysing the local coordinate systems, and provide a Hermitian
matrix which can determine the areas’ division. As mentioned in the Introduction,
our approach to proving the asymptotic behaviour of the n-th eigenvalue here should
be taken as a generalization of the method developed for 1-dimensional discrete case
in [22] to any dimension.

Finally, we list several determined Hermitian matrices as follows in 2-dimensions
to exhibit how the difference is between the continuous case (Atkinson type) and
the discrete case. The orders of the determined Hermitian matrices for the discrete
case are larger than those for the continuous case (Atkinson type) in (2)–(3), (5)–(6)
and (8). On the other hand, these orders are the same in (4), (7) and (9). Even
though, for example, the maximal jump number is 1 in the continuous case and the
Atkinson type, while it is 3 in the discrete case when K = {3}. However, it is both
2 in any case when K = {1, 2}.

Let

P−1
0 =

(
p1 p2

p̄2 p3

)

for the discrete case.

(1) K = ∅.

SD
K(A) =

⎛
⎜⎜⎝

s11 +
p3

p1p3 − |p2|2 s12 − p2

p1p3 − |p2|2

s̄12 − p̄2

p1p3 − |p2|2 s22 +
p1

p1p3 − |p2|2

⎞
⎟⎟⎠

and there are no SC
K(A) and SA

K(A), since there is no singularity for the continuous
case and the Atkinson type when K = ∅.

(2) K = {1}.

SC
K(A) = SA

K(A) = (s11), SD
K(A) =

⎛
⎜⎜⎝

s11 − p1p3 − |p2|2
p3

s12 − p2

p3

s̄12 − p̄2

p3
s22 +

1
p3

⎞
⎟⎟⎠ .

(3) K = {3}.
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SC
K(A) = SA

K(A) = (s33),

SD
K(A) =

⎛
⎜⎜⎜⎜⎜⎝

s11 +
p3

p1p3 − |p2|2 s12 − p2

p1p3 − |p2|2 s13

s̄12 − p̄2

p1p3 − |p2|2 s22 +
p1

p1p3 − |p2|2 s23

s̄13 s̄23 s33

⎞
⎟⎟⎟⎟⎟⎠ .

(4) K = {1, 2}.

SC
K(A) = SA

K(A) = (sij)1�i,j�2, SD
K(A) =

(
s11 − p1 s12 − p2

s̄12 − p̄2 s22 − p3

)
.

(5) K = {1, 3}.

SC
K(A) = SA

K(A) = (sij)i,j∈{1,3},

SD
K(A) =

⎛
⎜⎜⎜⎜⎜⎝

s11 − p1p3 − |p2|2
p3

s12 − p2

p3
s13

s̄12 − p̄2

p3
s22 +

1
p3

s23

s̄13 s̄23 s33

⎞
⎟⎟⎟⎟⎟⎠ .

(6) K = {3, 4}.

SC
K(A) = SA

K(A) = (sij)3�i,j�4,

SD
K(A) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

s11 +
p3

p1p3 − |p2|2 s12 − p2

p1p3 − |p2|2 s13 s14

s̄12 − p̄2

p1p3 − |p2|2 s22 +
p1

p1p3 − |p2|2 s23 s24

s̄13 s̄23 s33 s34

s̄14 s̄24 s̄34 s44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(7) K = {1, 2, 3}.

SC
K(A) = SA

K(A) = (sij)1�i,j�3, SD
K(A) =

⎛
⎝ s11 − p1 s12 − p2 s13

s̄12 − p̄2 s22 − p3 s23

s̄13 s̄23 s33

⎞
⎠ .
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(8) K = {1, 3, 4}.

SC
K(A) = SA

K(A) = (sij)i,j∈{1,3,4},

SD
K(A) =

⎛
⎜⎜⎜⎜⎜⎝

s11 − p1p3 − |p2|2
p3

s12 − p2

p3
s13 s14

s̄12 − p̄2

p3
s22 +

1
p3

s23 s24

s̄13 s̄23 s33 s34

s̄14 s̄24 s̄34 s44

⎞
⎟⎟⎟⎟⎟⎠ .

(9) K = {1, 2, 3, 4}.

SC
K(A) = SA

K(A) = (sij)1�i,j�4, SD
K(A) =

⎛
⎜⎜⎝

s11 − p1 s12 − p2 s13 s14

s̄12 − p̄2 s22 − p3 s23 s24

s̄13 s̄23 s33 s34

s̄14 s̄24 s̄34 s44

⎞
⎟⎟⎠ .
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7 W. N. Everitt, M. Möller and A. Zettl, Discontinuous dependence of the n-th
Sturm–Liouville eigenvalues, In: General Inequalities (Birkhäuser, Basel, 1997).
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