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Abstract
Modeling and forecasting of mortality rates are closely related to a wide range of actuarial practices, such as the
designing of pension schemes. To improve the forecasting accuracy, age coherence is incorporated in many recent
mortality models, which suggests that the long-term forecasts will not diverge infinitely among age groups. Despite
their usefulness, misspecification is likely to occur for individual mortality models when applied in empirical stud-
ies. The reliableness and accuracy of forecast rates are therefore negatively affected. In this study, an ensemble
averaging or model averaging (MA) approach is proposed, which adopts age-specific weights and asymptotically
achieves age coherence in mortality forecasting. The ensemble space contains both newly developed age-coherent
and classic age-incoherent models to achieve the diversity. To realize the asymptotic age coherence, consider param-
eter errors, and avoid overfitting, the proposed method minimizes the variance of out-of-sample forecasting errors,
with a uniquely designed coherent penalty and smoothness penalty. Our empirical data set include ten European
countries with mortality rates of 0–100 age groups and spanning 1950–2016. The outstanding performance of MA
is presented using the empirical sample for mortality forecasting. This finding robustly holds in a range of sensitivity
analyses. A case study based on the Italian population is finally conducted to demonstrate the improved forecast-
ing efficiency of MA and the validity of the proposed estimation of weights, as well as its usefulness in actuarial
applications such as the annuity pricing.

1. Introduction
The ongoing improvements in human life expectancies over the past few decades have introduced out-
standing challenges in predicting mortality scenarios. As plotted in Figure 1(a), for the Italian population,
consistent mortality improvements are observed for ages 0–100 over the investigated period 1950–2016.
This issue is concerning, since accurate forecasts are essential to the preparing of plans by governments,
the designing of pension schemes and annuity products, and the reserving by insurance companies.
Specifically, the longevity risk, such that mortality rates are underestimated, can oblige more-than-
expected costs for life annuity providers and defined-benefit pension funds. This risk therefore may
negatively influence the global longevity risk market for pension liabilities, the size of which is around
60–80 trillion USD as of 2018 (Blake et al., 2019).

To understand and reduce the risks related to mortality and longevity, mortality modeling and fore-
casting have become standard mitigation tools. Among existing methods, one popular stream is based
on the seminal work of Lee and Carter (1992), which is widely known as the Lee–Carter (LC) model.
Influential extensions on LC have been proposed in the actuarial literature. Popular models include
the Renshaw–Haberman (RH) model (Renshaw and Haberman, 2006), functional demographic model,
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Figure 1. Italian mortality data and preliminary analyses.

or HU model proposed in Hyndman and Ullah (2007) and age-period-cohort (APC) model studied in
Cairns et al. (2009). Despite their popularity, a major drawback of LC and its extensions is the lack of
age coherence in forecasting. In other words, even for adjacent ages, forecasts produced by the LC model
may differ infinitely in the long run and are not biologically reasonable.

Existing literature has proposed a range of parametric specifications to resolve this issue. An influ-
ential work by Li and Lu (2017) develops the spatial–temporal autoregressive (STAR) model. The
desirable age coherence is realized by its established cointegration feature. Another novel attempt is the
age-coherent extensions of the LC model using the hyperbolic (LC-H) and geometric (LC-G) conver-
gences in the relative speeds of age-specific mortality decline (Gao and Shi, 2021). A similar principal
is adopted to the sparse VAR (SVAR) model by Li and Shi (2021), and we name the SVAR model using
hyperbolic and geometric convergences in the long-term mean by SVAR-H and SVAR-G, respectively.
Despite the realized age coherence, drawbacks still inevitably exist for those models. For instance, the
STAR model employs an ad hoc and thus restrictive sparsity structure to resolve the inherent high-
dimensionality (p >> N) issue of the mortality data (Guibert et al., 2019). Same as in LC, LC-H and
LC-G employ an inflexible temporal parametric approach (Li and Lu, 2017). SVAR-H and SVAR-G work
with differenced log mortality rates (i.e., mortality improvements) that may lose information. Given the
diversity, scarcity, and long-spanning nature of the mortality data, any individual model could be mis-
specified. Consequently, it is not realistic to expect that a single model would provide optimal forecasts
in all cases (Bates and Granger, 1969; Kleijn and Van Dijk, 2006; Genre et al., 2013).

To overcome such an outstanding issue, this paper aims to employ the ensemble averaging, also
known as the model averaging (MA) approach, to combine the coherent mortality models. MA is
a sophisticated and well-developed approach in machine learning (Ley and Steel, 2009; Amini and
Parmeter, 2012; Lessmann et al., 2012; Bork et al., 2020; Bravo et al., 2021), which has been widely
applied in recent economics and finance research and practices (see, for example, Eicher et al., 2011;
Mirestean and Tsangarides, 2016; Shiraya and Takahashi, 2019; Baechle et al., 2020; du Jardin, 2021,
among others). With respect to mortality data, Shang (2012) and Kontis et al. (2017) have employed
various MA strategies, such as the Bayesian model averaging (BMA). A recent study by Kessy et al.
(2021) examines the stacked regression ensembles.

Among those studies, the same weight is assigned to all ages within an individual model to ease
the computation and improve the stability in forecasting. However, mortality models usually behave
differently dependent on the age groups. To see this, we model the Italian data over 1950–1992 and
forecast rates spanning 1993–2006. The out-of-sample root of mean squared forecast errors (RMSFE)
at each age is then produced by averaging errors over all forecasting steps. The results of the LC and
its extensions are plotted in Figure 1(b). Clearly, LC and APC models are less favorable over young age
groups and should be assigned lower weights. Consequently, age-specific weights are more desirable to
achieve the optimal forecasting performance.
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In this paper, we employ the classic global minimum variance portfolio (GMVP) strategy (Markowitz,
1952) to choose the weights of the proposed MA approach. The implementation of GMVP without
restriction, however, can be dangerous in mortality forecasting, due to the inherent issues of the GMVP
solution. For one thing, GMVP ignores the parameter error, and using the in-sample variance may lead
to an overfitting issue when forecasting mortality rates. For another, if a dominant model exists, GMVP
solution may lead to a “winner-take-all” issue, such that most weights are attributed to this dominant
model.

To combat against those issues, we employ two strategies. First, following the approach of Shi
(2022a), the variance is minimized for out-of-sample forecast errors, rather than for in-sample resid-
uals. It is well known that out-of-sample error, such as MSFE, consists of both process and parameter
risks. Hence, the first issue of GMVP is well addressed via this strategy. Second, to realize the desirable
diversity, we employ ten models in the ensemble space: STAR, LC-H, LC-G, SVAR-H, SVAR-G, LC,
SVAR, APC, HU, and RH models. More importantly, the diversified age-specific weights are permitted
to allow for dynamics as evidenced in Figure 1(b).

Further, two additional penalties are considered in our MA approach to employ strong and rea-
sonable prior information of the mortality data. Specifically, as described above, long-run mortality
forecasts should be age coherent. To achieve this, a coherent penalty is imposed to reduce weights of
age-incoherent models. Moreover, due to the heterogeneity in out-of-sample forecasts among models,
drastic changes of weights from one age to another may result in abrupt differences between forecast
mortality rates. For instance, the forecast rate of age 50 in some year might be higher than that of age
51. In life insurance practice, this unreasonably suggests that younger policyholders will pay for higher
premiums than older policyholders. To resolve this issue, we impose a smoothness penalty in the opti-
mization to reduce abrupt changes in weights of the adjacent ages in the same model. Both penalties
are then selected using a hold-out-sample strategy. In addition, a non-negativity constraint is applied to
improve interpretability of weights.

Altogether, we consider eleven models in this paper: STAR, LC-H, LC-G, SVAR-H, SVAR-G, LC,
SVAR, APC, HU, RH, and MA. The empirical data sourced from Human Mortality Database (2019) of
ten European countries are examined. The ages are one-year groups of 0–100, and the timespan is 1950–
2016. We first present the baseline results of ten-step-ahead forecasts, using the popular performance
measure RMSFE over both ages and years. Three sets of sensitivity analyses are also conducted, by
altering individually the forecasting step, temporal coverage, and age groups. A comparison of the pro-
posed MA approach with the influential model confidence set (MCS) proposed in Hansen et al. (2011)
is further conducted. To systematically demonstrate its usefulness in economic and financial practices,
the proposed MA approach is employed to illustrate fixed-term annuities pricing in a separate case study.

The contributions of this paper are fivefold. First, this study is among the first to comprehensively
consider both age-coherent and non-age-coherent specifications and adopt age-specific weights in mor-
tality forecasting using the ensemble averaging strategy. The adopted objective function effectively
achieves the benefit of GMVP solution. The diversity and overfitting issues of GMVP are simultane-
ously addressed, via working with out-of-sample forecast errors and imposing two penalties to honor
the reliable prior information of mortality data. The estimated weights are therefore optimal by bal-
ancing the randomness of small sample sizes, consistency of estimation, and adopting useful prior
information. Essentially, our MA method is a supervised machine learning technique. Compared to
other techniques, such as the neural networks, the MA approach is more transparent and does not suffer
the “black-box” issue. Second, the proposed MA method provides asymptotically age-coherent fore-
casts. This is both theoretically verified and empirically visualized in the long-term forecast of our case
study. Thus, the desirable age coherence feature in the ensemble is not lost when the MA is executed,
even when age-incoherent models are included in the ensemble. Third, our empirical results demon-
strate that the proposed MA method can significantly improve out-of-sample forecasting performance
of all individual models in the ensemble. According to the RMSFE, MA ranks the first for eight out
of ten populations. This result is much robust in all sets of sensitivity analyses. Fourth, we consider
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other modeling selection/averaging approaches, such as the MCS and BMA. The outperformance of
our proposed approach is demonstrated, and the validity of the proposed estimation approach is illus-
trated by presenting the estimated age-specific weights. Fifth, a case study is provided to demonstrate the
effectiveness of the MA method in economic and financial practice. The narrower width of prediction
intervals suggests that MA can be more efficient in measuring uncertainties in mortality forecasting.
This is critical to practices like the annuity pricing, and an illustration is thoroughly conducted over
different starting ages and maturity terms. Thus, the proposed MA approach can be a widely useful tool
in forecasting mortality data for actuarial products. Implications on other actuarial modeling practices
are also briefly outlined.

The rest of this paper is organized as follows. In Section 2, we review the specification and features
of the LC model and briefly outline its extensions. Five coherent alternative models are explained in
Section 3. The MA approach is proposed in Section 4. We conduct empirical studies with robustness
checks and additional analysis in Section 5. Section 6 presents a case study, and Section 7 concludes.

2. The Lee–Carter model
Among the existing models, the seminal work proposed in Lee and Carter (1992), known as the Lee–
Carter (LC) model, is one of the most popular approaches. Essentially, LC belongs to the family of
factor models and decompose mortality rates into age-dependent and time-series factors. Specifically,
the logged central mortality rate of age x in year t, or ln mx,t, is specified as follows:

ln mx,t = ax + bxkt + εx,t, (2.1)

where x ∈ (1, . . . , N) and t ∈ (1, . . . , T). In terms of the factors, ax is the average age trend of ln mx,t

across t, bx is the relative speed of decline in ln mx,t at each x, and kt is a time-dependent index at each t.
Additionally, εx,t is the residual at age x and time t. It is usually assumed that εx,t follows a multi-Gaussian
distribution with zero means and independence on the temporal dimension.

Regarding the estimation of LC, the singular value decomposition (SVD) is the most frequently
employed technique. The detailed procedure to implement the SVD is described in Trefethen and Bau
(1997). It is worth noting that there are nonunique solutions to produce b̂x and k̂t via the SVD. Necessary
constraints are therefore imposed to obtain unique estimates, such that

∑N
x=1 b̂x = 1 and

∑T
t=1 k̂t = 0.

Remark 1. Much of the popularity of LC estimated by SVD is its self-explanatory parameters.
Intuitively, ax describes the overall, or “average,” pattern of the historical logged mortality rates on
the age dimension. bx and kt are orthogonal norms, which represent the relative dynamics of ln mx,t on
the age and temporal dimension, respectively.

To forecast the future logged mortality rates, or ln m̂x,T+h, âx and b̂x, are kept constant in Lee and Carter
(1992). The temporal factor k̂t, however, is intrinsically viewed as a random walk with drift process, such
that

k̂t = k̂t−1 + dk + et, (2.2)

where dk is the average change in k̂t, and et are independently and identically distributed (iid) Gaussian
sequences with zero means. Using (2.2) and the property of a random walk process, the h-step-ahead
forecast k̂T+h is produced as k̂T + hdk ∀h ≥ 1. Thus, the h-step-ahead forecast of logged mortality rate
can be obtained as follows.

ln m̂x,T+h = âx + b̂x(k̂T + hdk).

Based on the LC model, many extensions using the factor framework are proposed. For instance,
Renshaw and Haberman (2006) include the cohort effect in the LC specification, which considers
stochastic features of people born at different time periods (denoted as the RH model). An age-period-
cohort (APC) model is derived from RH by constraining the age-specific loadings of temporal and cohort

https://doi.org/10.1017/asb.2022.23 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2022.23


6 Le Chang and Yanlin Shi

effects (Cairns et al., 2009). Hyndman and Ullah (2007) extend the LC by introducing more principal
components in the decomposition of age and temporal effects, which are fitted via a functional modeling
approach (denoted as the HU model).

3. Coherent mortality models
One of the major drawbacks of the LC model is the lack of age coherence in forecasts (see, for instance,
Gao and Shi, 2021, among others). The same issue also applies to its popular extensions, including RH,
APC, and HU models. The concept of age coherence is first proposed in the influential work of Li and
Lu (2017), which ensures biologically reasonable forecasts of mortality rates in the long run. Intuitively,
age coherence means that predicted mortality rates (of the same population) across ages should not differ
indefinitely. Consistent with Li and Lu (2017), Gao and Shi (2021) and Li and Shi (2021), we formally
define age coherence as follows.

Definition 1. Age coherence means that for the h-step-ahead forecasts, | ln m̂i,T+h − ln m̂j,T+h| = Op(1),
∀i, j ∈ (1, . . . , N). For the concept of Op( · ), given a set of random variables Xn and a corresponding set
of constants an, if Xn = Op(an), then for any ε > 0, there exists a finite M > 0 and a finite N > 0 such that
P(|Xn/an| ≥ M) ≤ ε ∀n > N. That is, when h → ∞, | ln m̂i,T+h − ln m̂j,T+h| will not diverge to infinity.

Remark 2. Note that age coherence can also be defined using the original mortality scale, such that for
the h-step-ahead forecasts, we have |m̂i,T+h/m̂j,T+h| = Op(1), ∀i, j ∈ (1, . . . , N). To cope with the original
scale, a Poisson distribution (assumed for death counts) associated with a log-linear regression is often
employed, and the risk exposure (population counts) is usually employed as the offset factor (Brouhns
et al., 2002).

To address the lack of age coherence in the LC model, we describe five recently proposed alternatives
in this section. Among them, two are based on the LC framework, whereas three are developed from the
vector-autoregressive (VAR) model.

3.1. The spatial–temporal autoregressive (STAR) model
Despite its popularity, a general VAR model cannot be directly fitted to a typical mortality data set
for two reasons. First, a VAR model requires a stationary response variable, while mortality rates over
time are clearly trending and therefore nonstationary. Second, the unknown parameters (p) exceed the
observations (T ) in a nonconstrained VAR framework. For instance, with an intermediate number of age
groups (N), say 50, the p = 50 × 51 >> T issue will arise, given that observations are available only for
a few dozens of years.

To resolve those issues, Li and Lu (2017) propose the spatial–temporal autoregressive (STAR) model
to study and forecast mortality data. On the temporal dimension, it considers the Granger causality and
cointegration to resolve the stationarity problem. On the age dimension, the STAR model adopts the
sparse spatial information to reduce the dimensionality of p with the follow specification:

y1,t = α1 + y1,t−1 + ε1,t

y2,t = α2 + β2,1y1,t−1 + (1 − β2,1)y2,t−1 + ε2,t

yi,t = αi + βi,i−2yi−2,t−1 + βi,i−1yi−1,t−1 + (1 − βi,i−2 − βi,i−1)yi,t−1 + εi,t, (3.1)

where we let yi,t = ln mi,t for simplicity, i = 3, 4, . . . , N, and t = 1, 2, . . . , T . The residual sequence εi,t is
similarly assumed as in the LC model.1

1For illustration purpose, note that the STAR and all other VAR-type models investigated in this study consider only one lag in
the temporal specification.
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Rewriting (3.1) in a VAR(1) form, we have that

yt = α + Byt−1 + ε t, (3.2)

where yt = (y1,t, y2,t, . . . , yN,t)′, α = (α1, α2, . . . , αN)′, ε t = (ε1,t, ε2,t, . . . , εN,t)′, and

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · · · ·
β2,1 1 − β2,1 0 · · · · · ·
β3,1 β3,2 1 − β3,1 − β3,2 0 · · ·
...

...
. . .

. . . 0

· · · 0 βN,N−2 βN,N−1 1 − βN,N−2 − βN,N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.3)

To ensure invertibility and interpretability, it is required that 0 < βi,i−2 < 1, 0 < βi,i−1 < 1, and 0 < βi,i−2 +
βi,i−1 < 1 for all i > 2. When i = 2, we need that 0 < β2,1 < 1.

The interpretation of the STAR model parameters is straightforward. For age i > 2, (1 − βi,i−2 − βi,i−1)
is the usual temporal effect of the first time lag yi,t−1 on yi,t. As for the mortality practice, cohort effects
are more important, which are measured by βi,i−1 (the same cohort) and βi,i−2 (the younger neighbor-
ing cohort). The relevant positive constraints not only ensure the invertibility (and thus stationarity) of
yi+1,t − yi,t but also the interpretability of temporal and cohort effects. A negative measure is usually
unexplainable, and nor it is revealed in the existing literature.

In addition to the interpretability, the specification described in (3.2) and (3.3) has attractive statistical
features. As shown in Li and Lu (2017), with the assumption that all yi,t are I(1) (commonly used in
mortality research), all neighboring age pairs yi,t and yi+1,t are cointegrated with order (−1, 1). This
approach successfully resolves the stationarity issue and results in age coherence. More specifically,
cointegration suggests that yi+1,t − yi,t is stationary, which leads to a constant long-run mean. Further,
the total number of parameters is largely reduced from N2 + N to 3N − 3, which is feasible to solve
under a general penalized least squares framework with closed-form solutions.

Remark 3. To reduce the randomness of estimates owing to limited data availability, Li and Lu (2017)
conduct the estimation in a penalized least squares fashion, which imposes a Tikhonov (L2) regulariza-
tion in the loss function. In other words, three smoothing penalties (corresponding to αi, βi,i−1 and βi,i−2,
respectively, for age i) need to be preselected before a solution can be derived. Essentially, this assumes
that the coefficients across ages should change smoothly. See Section 3.4 for how those penalties are
selected.

The forecasting of STAR is therefore performed in an iterative fashion, where

ŷt+1 = α̂ + B̂yt

ŷt+h = α̂ + B̂̂yt+h−1 (3.4)

and h > 1. Due to the established co-integration feature, ŷi,t+h − ŷj,t+h is stationary for all i, j = 1, . . . , N
and i �= j, and h ≥ 1. This then straightforwardly ensures the age coherence in forecasting.

3.2. Age-coherent extensions of the LC model
Other than working with the VAR framework, a recent study by Gao and Shi (2021) proposes two
effective age-coherent extensions of the LC model. Both are motivated by Li et al. (2013) to rotate b̂x,h

gradually over time. The rotation is supported by the fact that mortality decline decelerates at younger
ages and accelerates at old ages (Li et al., 2013). Also, to realize age coherence in the long run, Gao and
Shi (2021) require that b̂x,h eventually converge (rotate) to a constant 1/N for all ages (a flat line). The
rationale of 1/N comes from the constraint that

∑N
x=1 b̂x,h = 1 when h ≥ 1 and b̂i,h = b̂j,h when h → ∞.
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Specifically, the first extension adopts the autoregressive (AR) framework. Under the AR(1) scenario,
the time-varying b̂x,h (represented by b̂G

x,h) is specified below.

b̂G
x,h = rl

x(b̂
G
x,h−1 − 1/N) + 1/N = (rl

x)
h(b̂x − 1/N) + 1/N, (3.5)

where h ≥ 1 and b̂G
x,0 = b̂x. To ensure the stationarity, the coefficient rl

x strictly falls between 0 and 1. In
such a case, b̂G

x,h converges to the long-run mean 1/N geometrically. For a larger (smaller) rl
x, the speed

of convergence is slower (faster).
The second extension employs the hyperbolic decay, which may achieve the final convergence slower

than the AR specification. This concept is often refer to as long memory in time-series analysis for
economic and financial practices (see, for example, Smallwood and Norrbin, 2006; Ho and Shi, 2020,
among others). When assumed to decay hyperbolically, the time-varying b̂x,h (represented by b̂H

x,h) is
described by

b̂H
x,h = δh(d

l
x)(b̂x − 1/N) + 1/N, (3.6)

where

δk(d
l
x) = k − 1 + dl

x

k
δk−1(d

l
x) and δ0(dl

x) = 1.

The hyperbolic parameter, or dl
x, needs to fall between 0 and 1 for a stationary rotation. In this case,

since δh(dl
x) → 0 when h → ∞, b̂H

x,h will eventually converge to 1/N and thus leads to the age-coherent
forecasts. The speed of decay is slower (faster) for larger (smaller) dl

x.
Note that both rl

x and dl
x are age dependent, and their estimation is not a trivial issue due to the

large sample size on the age dimension. Gao and Shi (2021) employ the inversed Epanechnikov kernel
to reduce the complexity of estimation. More specifically, let τ defined as a scaled index x/N with
x ∈ {1, . . . , N}, when evaluated at N , the inversed Epanechnikov kernel is determined by 1 − Kbw (τ −
1) = 1 − K( τ−1

bw ), where K(τ − 1) = 0.75(1 − (τ − 1)2)+. The parameter bw is the corresponding kernel
bandwidth and constrained to fall in the range of (0, 1]. Hence, the parametric structures of rl

x and dl
x are

simplified to follow the pattern of 1 − Kbw (τ − 1) across ages.

Remark 4. The rationale of employing the inversed Epanechnikov kernel is thoroughly discussed in
Gao and Shi (2021). In short, the bandwidth determines a “cutoff” age, and the kernel describes a pattern
consistent with the sense that mortality decline is more difficult for older ages (Li et al., 2013), starting
from this cutoff. For instance, with ages 0–100 and a bandwidth of 0.7, all ages younger than 70 will
share the same mortality decline speed. For ages older than 70, this decline is more difficult for an age
further away from 70. Essentially, only two parameters are needed when (3.5) or (3.6) is employed: the
decay parameter of the first age (rl

1 or dl
x) and the kernel bandwidth bw. See Section 3.4 for how those

parameters are selected.

Once rl
x and dl

x become available, the forecast logged mortality rates of the LC extension with b̂G
x,h

(LC-G) and that with b̂H
x,h (LC-H) are

ln m̂G
x,T+h = âx + b̂G

x,h

(
k̂T + hd̂k

)
ln m̂H

x,T+h = âx + b̂H
x,h

(
k̂T + hd̂k

)
,

(3.7)

where âx and k̂t are identical to those of the original LC model. In other words, the in-sample fits of
LC-G and LC-H are the same as those described in (2.1). Recall that when h → ∞, b̂G

x,h or b̂H
x,h converges

to 1/N. Thus, following (3.7), using either LC-G or LC-H, forecast rates of different ages will not differ
infinitely and are thus age coherent.
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3.3. The sparse VAR (SVAR) model and coherent extensions
Despite its attractive features, STAR’s parametric structure as of (3.3) is ad hoc and relatively inflexible.
Specifically, the effects of all cohorts other than the same and next younger one are forced to be zero.
This may limit a comprehensive analysis of the effects of all possible cohorts.

To address this, Guibert et al. (2019) recently work on the mortality improvements denoted by
�yi,t = yi,t − yi,t−1 and propose a sparse VAR (SVAR) model. Since yi,t is assumed I(1), the differentiation
resolves the stationarity issue of a VAR system. Moreover, the SVAR model adopts a pure data-driven
method to select nonzero coefficients via the ENET penalty estimation, rather than working with the ad
hoc structure as in (3.3). The SVAR model is specified below.

�yt = a +
V∑

v=1

Bv�yt−v + ε t, (3.8)

where �yt = (�y1,t, �y2,t, . . . , �yN,t)′, V is the preselected AR lags and the sparsity of Bv is determined
by the ENET penalty without any constraints. The forecast is performed similarly to (3.4) as a usual
VAR-type model for �yt, and the forecast for the original logged mortality rate is computed as ŷt+h =
yt +

∑h
l=1 �̂yt+l.

However, the desirable feature of age coherence is lost when working with mortality improvements
directly, as in the SVAR model. That is, as long as the estimated long-term mean of �yi+1,t − �yi,t

(denoted by �μ̂i+1) is not Op(1/h), the long-run forecast ŷi+1,t+h − ŷi,t+h = yi+1,t − yi,t + h�μ̂i+1 will still
grow to reach infinity, when h → ∞.

To produce age-coherent forecasts, a recent study of Li and Shi (2021) extends the approach of Gao
and Shi (2021) to the SVAR framework. In particular, the intercept α̂x is allowed to be time-varying for
age x, and Li and Shi (2021) adopt the hyperbolic decay as follows:

α̂H
x,h = δh(d

s
x)(α̂x − α̂∗

x ) + α̂∗
x ,

where α̂x is the estimate of a usual SVAR model as of (3.8), and α̂∗
x is the long-term mean of α̂x. This

specification is named SVAR with hyperbolic decay, or SVAR-H model. A similar specification can then
be derived following the geometric decay as in (3.5):

α̂G
x,h = rs

x(α̂
G
x,h−1 − α̂∗

x ) + α̂∗
x ,

which is named SVAR with geometric decay, or SVAR-G model. The age-dependent rs
x and ds

x can be
specified using the inversed Epanechnikov kernel, as for LC-G and LC-H models.

Forecasts of �̂yT+h using the SVAR-G or SVAR-H model are the same as in (3.4). Logged mortality
rates can then be forecast by

ŷx,T+h = yx,T +
h∑

k=1

�ŷx,T+k.

Remark 5. Since �yx,t is stationary, ŷx,T+h will approach yx,T + hμ̂x in the long run, where μ̂x is the
estimated mean of �yx,t. In a matrix form, it is easy to see that

μ = [I − B1 − . . . − BV]−1α. (3.9)

Further, recall that when h → ∞, α̂G
x,T+h or α̂H

x,T+h converges to α̂∗
x . To achieve age coherence, α̂∗

x is
obtained such that all elements of μ are identical. In practice, estimates of α̂∗

x are produced as follows:

α̂
∗
x = [I − B̂1 − . . . − B̂V]μ̂∗,

where B̂v are in-sample estimates of a usual SVAR model, and μ̂
∗ consists of identical elements of μ̂∗,

which can be estimated as the average of μ̂x over all ages. μ̂x is obtained from the in-sample estimates
of a usual SVAR model with (3.9).
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Note that there are three tuning parameters in both SVAR-H and SVAR-G models: the sparsity penalty
parameter (λs), the hyperbolic or geometric decay parameter of the first age group (ds

1 or rs
1), and the

kernel bandwidth (bw). See Section 3.4 for how those parameters are selected.

3.4. Tuning parameters selection
All the five age-coherent mortality models described in this section require some preselected tuning
parameters, either before the model is fitted (STAR, SVAR-H, and SVAR-G) or at the forecasting
stage (LC-H, LC-G, SVAR-H, and SVAR-G). Due to the time-series nature, the usual cross-validation
technique to select tuning parameters is not directly applicable.

In practice, a popular strategy for time-series data is to adopt the expanding-window approach
explained in Hyndman and Athanasopoulos (2018) to collect short-term out-of-sample forecasts.
However, since age coherence is a long-term property, we follow Gao and Shi (2021) and adopt the
hold-out-sample approach to select tuning parameters in all cases. Specifically, the selection aims to
minimize

RMSFE =
√√√√ 1

N(T/4)

N∑
i=1

T/4∑
h=1

(
ln m̂i,3T/4+h − ln mi,3T/4+h

)2
, (3.10)

where RMSFE is the root of mean squared forecasting errors, and the evaluation period is given by the
last fourth ([3T/4 + 1, T]) of the data in our study. A high-level summary of the selection procedure is
listed in Table 1 of Supplement Material for each model.

4. The proposed ensemble averaging approach
Despite the achieved desirable age coherence, among the five investigated models in Section 3, it is
usually difficult to pick up one single model that uniformly outperforms the rest. This may be attributed
to the fact that each model has its merits and drawbacks. For instance, the STAR model does not consider
the empirically sensible decline in decaying speed for older ages. In contrast, the cohort effect may be
“ignored” in extensions of LC and SVAR. Mortality data are often observed for a long time span and over
countries/regions. The cross-sectional (temporal) heterogeneity may favour certain assumptions over
some populations (during some periods). In addition, despite the long-term issue of age incoherence,
influential models, such as LC, SVAR, APC, HU, and RH, may demonstrate favorable performance for
certain age groups/populations in short term. Consequently, no single model may be well specified to
capture the features and dynamics in mortality modeling entirely.

Among the existing literature, ensemble averaging or MA is an effective strategy to combat against
such uncertainty (see, for example, Ley and Steel, 2009; Amini and Parmeter, 2012; Lessmann et al.,
2012; Bork et al., 2020; Bravo et al., 2021, among others). In this section, we propose an effective MA
strategy using the variance-optimization-weights to realize age-coherent forecasts. Technical details are
also provided.

4.1. Background: A solution from global minimum variance portfolio
In his seminal work, Markowitz (1952) discusses a solution to achieve global minimum variance for a
portfolio, or the GMVP solution. The idea can be straightforwardly applied to forecasting error mini-
mization using an MA model. Suppose that there exist a finite number (J > 2) of models, the forecasting
error of an MA approach is

eM,t = w1e1,t + w2e2,t + . . . + wJeJ,t,
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Table 1. Out-of-sample forecasting performance.

STAR LC-H LC-G SVAR-H SVAR-G LC SVAR APC HU RH MA
Austria 0.1992 0.1758 0.1841 0.2019 0.2025 0.2338 0.2040 0.3800 0.1764 0.2323 0.1750
Denmark 0.2556 0.3282 0.3276 0.3154 0.3156 0.3394 0.3207 0.2961 0.3219 0.3549 0.2902
UK 0.1004 0.1299 0.1322 0.1087 0.1084 0.1505 0.1000 0.2702 0.1286 0.0959 0.0866
Finland 0.2517 0.2434 0.2457 0.2811 0.2813 0.2641 0.2849 0.4143 0.2529 0.2829 0.2387
France 0.0985 0.1406 0.1435 0.0919 0.0930 0.1686 0.0948 0.2727 0.1104 0.1807 0.0794
Italy 0.1374 0.1233 0.1309 0.1218 0.1231 0.2072 0.1237 0.4068 0.1528 0.2369 0.1155
Netherlands 0.1434 0.1517 0.1546 0.1552 0.1553 0.1735 0.1430 0.2352 0.1831 0.1718 0.1248
Norway 0.2643 0.2281 0.2334 0.2875 0.2874 0.2898 0.3100 0.3284 0.2819 0.2694 0.2359
Spain 0.1562 0.1851 0.1899 0.1578 0.1575 0.2425 0.1581 0.3045 0.1508 0.3369 0.1368
Switzerland 0.2270 0.2717 0.2728 0.2477 0.2472 0.2901 0.2494 0.2681 0.2376 0.3094 0.2238
Mean 0.1834 0.1978 0.2015 0.1969 0.1971 0.2360 0.1989 0.3176 0.1996 0.2471 0.1707
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12 Le Chang and Yanlin Shi

where ej,t is the forecast error at time t for model j (j ∈ {1, 2, . . . , J}), wj is the assigned weight for the jth
model and eM,t is then the weighted summation of forecast errors of all J models, or the forecast error
of the MA approach. Denote that w = (w1, . . . , wJ)′, the GMVP solution of the optimal w∗ is

w∗ = �−1
e ι(ι′�−1

e ι)−1,

where �e is a J × J variance-covariance matrix of forecast errors, and ι is a J × 1 vector of ones.

Remark 6. Note that when forecast errors of some models are strongly (and positively) correlated, it
is possible to have negative weights in w∗. Under a financial portfolio optimization scenario, this means
a short position should be held for some assets. In the mortality case, although negative weights are
sensible from a model combination perspective, their interpretation is not as straightforward. Also, neg-
ative weights might cause instability in long-term forecasting. To avoid this, the non-negative constraints
should be added to the optimization issue that is usually faced in a GMVP problem:

min
w

w′�ew

subject to ι′w = 1

w ≥ 0.

This is a quadratic optimization issue with equality and inequality constraints, which can be solved via
iteration-based algorithms (Gill et al., 2019).

4.2. An MA approach for mortality forecasting
For an MA model used in mortality forecasting, the most essential issue is the objective function to
be employed in the optimization. This is because that for the original GMVP solution, there are two
major issues. First, since only the global risk is considered, GMVP may result in large weights in few
models. This is also known as the “winner-take-all” problem and may negatively affect diversity in an
MA approach. Second, the estimate is highly sensitive to parameter estimation errors of the covariance
matrix. Consequently, an inappropriate covariance error matrix may lead to unrobust weights in an MA
model.

In this paper, diversity is ensured in two ways. First, we employ both age-coherent and age-incoherent
models, which include a total of ten specifications: STAR, LC-H, LC-G, SVAR-H, SVAR-H, LC, SVAR,
APC, HU, and RH. Second, different from a single weight for all ages used in existing studies (see, for
example, Shang, 2012; Kontis et al., 2017; Kessy et al., 2021, among others), age-specific weights are
employed in all cases. As preliminarily evidenced in Figure 1(b), not all models can perform uniformly
well for all age groups. This setting then effectively prevents the existence of one or few dominant
models.

To avoid the potential overfitting issue of in-sample errors, we construct 	e using the out-of-sample
errors only. Specifically, the objective function will consist of out-of-sample mean squared forecasting
errors (MSFE). Since it is well known that MSFE incorporates both process risk and parameter risk, this
will effectively address the second problem of GMVP. In addition, we adopt two pieces of prior infor-
mation in the optimization to further improve reasonableness in mortality forecasting. First, as argued
above, the MA approach should (asymptotically) result in age-coherent forecasts. Therefore, the weights
assigned to age-incoherent models should be asymptotically approaching zero. A penalty is imposed in
the objective function for this aim. Second, mortality rates across neighboring ages tend to demonstrate
similar dynamics. However, without further constraints, abrupt changes of forecast rates will be unavoid-
able, even for neighboring ages, due to potential randomness introduced by small samples. Consequently,
inspired by existing studies such as Li and Lu (2017), a smoothness penalty is additionally introduced
to the objective function.
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The optimization problem to choose optimal weights of an MA mortality model is then stated below.
Note that for a mortality data set with N age groups estimated by J models (with the total Jc age-
coherent models ordered first and the rest Jn age-incoherent models ordered last), the weight vector to
be estimated is w = (w′

1, . . . , w′
N)′ (the dimensionality is (NJ) × 1), with wx = (wx,1, . . . , wx,J)′. To further

allow for the age coherence penalty, smoothness penalty and non-negative weights, we have the following
optimization problem:

min
w

w′�ew + +λ1w′C1w + λ2w′C2w

subject to Iw = 1
w ≥ 0,

(4.1)

where �e is an (NJ) × (NJ) matrix with �ex on the diagonal blocks and elsewhere 0. C1 and C2 are both
(NJ) × (NJ) ancillary matrices to specify the quadratic age coherence penalty and smoothness penalty,
respectively. λ1 and λ2 are the associated tuning parameters. I is another (NJ) × (NJ) ancillary matrix
to impose the equality constraint for each age. Specifically, C1 is a diagonal matrix with the following
diagonal items:

(

N × J︷ ︸︸ ︷
0, . . . , 0︸ ︷︷ ︸

Jc

, 1, . . . , 1︸ ︷︷ ︸
Jn

. . . 0, . . . , 0︸ ︷︷ ︸
Jc

, 1, . . . , 1︸ ︷︷ ︸
Jn

).

The xjth column of C2 is

cxj = (

xj − 1︷ ︸︸ ︷
0, .., 0︸ ︷︷ ︸

j − 1

, −1, 0, .., 0︸ ︷︷ ︸
j − 1,−1,...

, 1, 0, .., 0︸ ︷︷ ︸
j − 1

, . . . )′.

That is, there are (N − 1) (−1)’s and one 1 in each column, with all other elements being 0. An example
is provided below to illustrate the specification when N = 2, Jc = 1 and Jn = 1. Also,

I =

⎛
⎜⎜⎜⎜⎜⎝

ι′ 0 · · · 0
0 ι′ · · · 0

· · · · · · · · · · · ·
0 0 · · · ι′

⎞
⎟⎟⎟⎟⎟⎠

,

where ι is a J × 1 vector consisting of 1, as defined previously. The w∗ can then be obtained using a
standard quadratic programming algorithm, with preselected λ1 and λ2 (Goldfarb and Idnani, 1983).
Note that the coherence penalty term is

λ1w′C1w = λ1

N∑
x=1

Jn∑
j=1

w2
x,j,

which reduces the weights for the Jn age-incoherent models with the influence of penalty λ1, and the
smoothness penalty term is

λ2w′C2w = λ2

N∑
x=2

J∑
j=1

(wx−1,j − wx,j)
2,

which increases the smoothness of assigned weights for the same model between adjacent ages for a
larger λ2.
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Example 1. Consider a simple case with N = 2 ages, Jc = 1 and Jn = 1 models, we have that

�e =
⎛
⎝�e1 0

0 �e2

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎝

σ 2
1,1 σ1,12 0 0

σ1,12 σ 2
1,2 0 0

0 0 σ 2
2,1 σ2,12

0 0 σ2,12 σ 2
2,2

⎞
⎟⎟⎟⎟⎟⎠

,

C1 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

and C2 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1

⎞
⎟⎟⎟⎟⎟⎠

.

The optimization problem stated in (4.1) then reduces to

min
w

w2
1,1σ

2
1,1 + w2

1,2σ
2
1,2 + w2

2,1σ
2
2,1 + w2

2,2σ
2
2,2 + 2w1,1w1,2σ1,12 + 2w2,1w2,2σ2,12

+λ1(w2
1,2 + w2

2,2) + λ2[(w1,1 − w2,1)2 + (w1,2 − w2,2)2]

w1,1 + w1,2 = 1

subject to w2,1 + w2,2 = 1

w1,1, w1,2, w2,1, w2,2 ≥ 0.

With a larger (smaller) λ1, weights of the second model (assumed age-incoherent) will be smaller
(larger). Similarly, with a larger (smaller) λ2, the ŵ1,1 and ŵ1,2 will change to ŵ2,1 and ŵ2,2 more (less)
smoothly.

Denote that the h-step-ahead forecast of the age x’s logged mortality rate by the jth model as ŷx,j,T+h,
the forecast of MA is therefore

ŷx,M,T+h =
J∑

j=1

ŵx,jŷx,j,T+h.

We now demonstrate that this forecast also achieves the desirable age coherence in an asymptotic fashion.

Theorem 1. Assume that the estimated long-run mean of mortality improvements is not increasing
with h for all models considered in the MA approach, those estimators of age-coherent models are all
asymptotically consistent, h and T go to infinity at the same rate, and the penalty λ1 goes large with T2.
Forecasts of the MA approach using estimated weights as the solution to (4.1) are asymptotically age
coherent.

Proof. See Supplement Materials A. �
Finally, the selection of λ1 and λ2 can still be performed using the hold-out-sample strategy as

explained in Section 3.4. The detailed steps to forecast logged mortality rates using the proposed MA
approach are listed below.

1. With the training period [1, . . . , T/2], fit each of the J models that are included in the ensemble;
2. Collect out-of-sample forecast errors over [T/2 + 1, . . . , 3T/4], and calculate the sample

estimate �̂e;
3. Perform a grid search of λ1 and λ2: for each candidate, obtain estimates of weights as in (4.1)

using �̂e obtained in Step 2, fit all individual models over the full training sample [1, . . . , 3T/4],
produce the forecasts over the test period [3T/4 + 1, . . . , T], and calculate the corresponding
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RMSFE of the MA model using the estimated weights and forecasts of individual models as in
(3.10);

4. Select the optimal λ1 and λ2 as that minimize the RMSFE;
5. Repeat steps 1-2 to obtain final estimated weights, with selected tuning parameters over

training period [1, . . . , 3T/4] and �̂e estimated with out-of-sample forecast errors over
[3T/4 + 1, . . . , T]; and

6. Conduct the out-of-sample forecasting ([T + 1, . . . , T + h]) with each of the J models, and the
forecast rate of MA is their weighted summation using weights estimated at step 5.

To study the uncertainties of the forecast, we may follow the usual bootstrap method as explained
in Chang and Shi (2021). Simply speaking, in-sample errors can be bootstrapped to produce replicates,
which are then fitted following the procedure explained above to forecast new rates. The 2.5th and 97.5th
percentiles out of those forecasts can then construct the 95th prediction interval (PI).

Remark 7. The advantages of the proposed MA approach are fourfold. First, different from a “naive”
simple average approach, the weights are selected in a way that follows the spirit of GMVP and thus hon-
ors the diversity benefits. Second, the employed objective function effectively resolves two major issues
of the GMVP solution. In particular, as forecast errors consist of yx,T+h − ŷx,j,T+h, the squared loss (vari-
ance) to be minimized is composed of out-of-sample MSFE, which considers the parameter risk that
GMVP neglects. In addition, the imposed penalties ensure asymptotic age coherence in the long run and
simultaneously reduce the risk of overfitting in the short run. Specifically, the employed hold-out-sample
strategy to choose a smoothness penalty could effectively eliminate the undesirable abrupt changes in
forecasts rates (a signal of overfitting) from one age to another. This may also improve the consis-
tency of weights estimation, since potential biasness can be effectively reduced by minimizing RMSFE
over the test sample. Thus, a biasness adjustment factor is not needed in (4.1). Third, the imposed
non-negativity constraint improves the interpretability. In short, the proposed MA approach consid-
ers both the in-sample fitting and out-of-sample forecasting accuracy, as well as the interpretability
issue. Also, the modeling mechanic of our approach is transparent. As a supervised learning technique,
this may be considered an advantage of our approach over other competitive but more “black-box”
machine learning models, such as the neutral networks. Fourth, the curse of high dimensionality will
be avoided by working with mortality rates of individual ages. To see this, although �e in (4.1) is high-
dimensional, it is a sparse matrix with only nonzeros on the diagonal blocks. Despite the large value
of N , each �ex only considers J models (J × J). Since it usually holds that J << T , �ex can be reliably
estimated.

5. Empirical out-of-sample forecasting results
In this study, we focus on the mortality data of ten European countries investigated in the seminal work of
Li and Lee (2005): Austria, Denmark, the United Kingdom (UK), Finland, France, Italy, Netherlands,
Norway, Spain, and Switzerland. All data are obtained from the Human Mortality Database (2019).
Following Booth et al. (2006), we choose an opportune range of data, 1950–2016, to have a reli-
able, complete data set. Similarly, ages from 0 to 110 (the upper limit in Human Mortality Database,
2019) years are included in the sample, where data at older ages (100 and above) are grouped to avoid
potentially erratic rates therein. The crude total (uni-sex) mortality rates are studied.

To illustrate the powerfulness of our proposed model, we consider the training sample of 1950–2006
and forecast the mortality rates for 2007–2016 as the baseline results. Out-of-sample forecasts of the
eleven investigated models: STAR, LC-H, LC-G, STAR-H, STAR-G, LC, SVAR, APC, HU, RH, and
MA are presented and compared. Next, we conduct three sets of relevant sensitivity analyses, including
robustness check on the forecasting horizon, sample period, and age groups. Additional analyses with
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Figure 2. Heatmap of model forecasting accuracy rankings under the baseline scenario.

the model confidence set (MCS) and Bayesian modeling average (BMA) are conducted at the end of
this section.2

5.1. Baseline results
To compare the forecasting performance across all models, we follow existing studies such as Li and Lu
(2017) and employ the RMSFE examining all age groups and forecasting steps:

RMSFE =
√√√√ 1

101 × h

h∑
i=1

100∑
x=0

(yx,T+i − ŷx,T+i)2.

In the baseline case, we select h = 10, such that the training sample of 1950–2006 is fitted, and the
out-of-sample forecasts are produced over 2007–2016 for each population. The ten individual models:
STAR, LC-H, LC-G, STAR-H, STAR-G, LC, SVAR, APC, HU, and RH are first estimated, following
necessary tuning parameter selection procedures described in Section 3.4. Weights of those models are
then chosen following steps listed in Section 4.2. All forecasts of each of the eleven models are then
collected to compute their corresponding RMSFE. This procedure is executed for all the ten examined
populations.

All specific RMSFEs are presented in Table 1. To facilitate the comparison, the ranking of each model
is displayed in Figure 2, and a black color indicates a higher place. On average, it can be seen that the
five age-coherent models beats the five age-incoherent counterparts. More importantly, contrasting the
six age-coherent sets of forecasts, those of MA outperform individual models in eight out of the ten
populations and are the second or third best for the rest. This strongly supports the dominant forecasting
accuracy using our proposed MA technique. As for the specific metrics, on average, the RMSFE of MA
is 0.1707, which is almost 25% smaller than that of LC (0.2360). A summary of those baseline RMSFEs
can be found in Table 2, which is presented when the MCS analysis is performed.

We now compare the individual models included in the ensemble. On average, STAR produces the
lowest RMSFE, and results of the other four age-coherent models are relatively close to each other.
Specifically, the average ranking of STAR is 3.6, and those of LC-H, SVAR-H, and SVAR-G are close
to 5, whereas LC-G ranks somewhat lower at 7. Further, RMSFEs of SVAR-H and SVAR-G are much
similar throughout all cases. Those of LC-H and LC-G are also not too far away from each other, although

2We have also conducted a simulation study using the age-coherent models only, the results of which are consistent with the
baseline observations and available upon request.
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Table 2. Model confidence sets: selected models.

STAR LC-H LC-G SVAR-H SVAR-G LC SVAR APC HU RH
Austria X X
Denmark X X
UK X X
Finland X X
France X X X X X X
Italy X X X X X X X
Netherlands X X X X
Norway X X X
Spain X X
Switzerland X X

the difference is visually larger than those in SVAR-H and SVAR-G. For the five age-incoherent models,
SVAR and HU result in similar overall performance, whereas LC, APC, and RH rank at the end of all
considered models.

5.2. Sensitivity analyses
To check the robustness of baseline results, we consider three sets of sensitivity analyses individually:

1. Forecast steps are increased to h = 16, as examined in Gao and Shi (2021);
2. The starting year is truncated to 1960; and
3. The age range is reduced to 0–89.

The ranking of all models examined in each set is plotted in Figure 3(a)–(c), and corresponding
RMSFEs are summarized in Table 2 in the Supplement Materials. The ranking plot suggests that our
proposed MA approach works consistently well by altering individually the forecasting horizon, weights
construction, sample period, and age groups. It almost uniformly ranks among the top 3 models and
produces the smallest average RMSFE in all scenarios. Nevertheless, it is worth noting that STAR model
ranks the second best in all cases, whereas LC, APC, and RH are the three least preferred models.
The overall performance of the five age-coherent models is uniformly better than that of the five age-
incoherent models, by averaging the RMSFEs across relevant models and populations.

In summary, we employ the popular criterion RMSFE and demonstrate that the proposed MA
approach can overall improve the forecasting performance of all models included in the ensemble. This
conclusion is robust when various sensitivity analyses are conducted with individual adjustment being
made.

5.3. Comparison with the model confidence set and Bayesian modeling average approaches
In their seminal work, Hansen et al. (2011) propose an MCS approach that chooses the subset of supe-
rior models out of a range of candidate. Those superior models are identified by testing if they can be
assumed to present equal predictive ability at a given confidence level. Such a test may be performed for
any loss functions, including the popular squared losses employed in this paper. Briefly speaking, the
MCS test works using bootstrap samples sequentially, by eliminating the worst model at each stage. The
procedure stops until the null hypothesis of equal predictive ability of the remaining model cannot be
rejected.
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Figure 3. Heatmaps of model forecasting accuracy rankings under additional scenarios.

To employ the MCS for mortality forecasting, we produce squared forecast errors over the last 1/4
of the training period (i.e., 1993–2006) for each individual model. Similar to Kessy et al. (2021), we
choose a confidence level of 10%, and the selected models for each population are presented in Table 2.
It is interesting to note that LC-H and LC-G are the two mostly selected model in the MCS, followed by
STAR. On the other hand, LC, APC, and RH models are not picked in any of the ten populations.

Assuming the equal weights for all ages and selected models, we construct this new MA approach via
the MCS method. Together with the baseline results, the RMSFEs are summarized in Table 3, and indi-
vidual ranks are illustrated in Figure 3(d). Clearly, our proposed MA approach beats the MCS according
to all the five metrics presented in Table 3. For RMSFE of individual populations, our approach results in
more accurate forecasts in seven out of ten countries. Additionally, given that MCS significantly reduces
the number of selected models in the ensemble, we conclude that our approach is preferred for both the
achieved diversity and resulted forecasting accuracy.

Alternative to the GMVP and MCS, another potentially useful model averaging approach is the
Bayesian modeling average (BMA). Specifically, weights of the BMA are essentially posterior model
probabilities. Detailed calculations of those weights can be found in Raftery et al. (1997), and a full
BMA usually requires a computational intensive approach, such as the Markov chain Monte Carlo.
Fortunately, in practice, seminal works including Bates and Granger (1969) have suggested that weights
of a full BMA can be well approximated by employing a much simpler Akaike or Bayesian informa-
tion criterion. Applications of such an approximation to mortality data can be found in Shang (2012).
However, Wagenmakers and Farrell (2004) point out that if one model in the ensemble is dominant
according to the used information criterion, the posterior probability of a BMA may tend to be close to
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Table 3. Summary of all investigated models including the MCS.

Mean Std. Dev. Median Q1 Q3

STAR 0.1834 0.0642 0.1777 0.1389 0.2455
LC-H 0.1978 0.0680 0.1804 0.1434 0.2396
LC-G 0.2015 0.0665 0.1870 0.1462 0.2426
SVAR-H 0.1969 0.0814 0.1798 0.1302 0.2727
SVAR-G 0.1971 0.0812 0.1800 0.1311 0.2727
LC 0.2360 0.0614 0.2381 0.1819 0.2834
SVAR 0.1989 0.0871 0.1810 0.1286 0.2760
APC 0.3176 0.0628 0.3003 0.2709 0.3671
HU 0.1996 0.0702 0.1798 0.1513 0.2491
RH 0.2471 0.0807 0.2532 0.1936 0.3027
MA 0.1708 0.0728 0.1560 0.1088 0.2368
MCS 0.1802 0.0711 0.1633 0.1200 0.2417
BMA 0.1792 0.0677 0.1630 0.1255 0.2373
Note: bold numbers are the smallest quantity for each statistic across the twelve models.

one, also known as the “winner-take-all” issue. Consequently, we consider an alternative BMA technique
discussed in Kontis et al. (2017), and age-specific weights are approximated by

ŵb
x,j ≈

e−0.5|PBx,j|∑J
j=1 e−0.5|PBx,j|

,

where PBx,j = ∑h
i=1 (ŷx,j,T+i − yx,j,T+i)/h is the projection bias for logged mortality rates of age x produced

by model j. Intuitively, due to the closeness of mortality forecasts, no PBx,j could be universally small
or close to 0 to cause a dominant weight in a BMA mortality model.

Using the age-specific BMA weights of all models, the RMSFE results are summarized in the last
row of Table 3. Overall, the results of BMA outperform all but those of our MA approach. Two conclu-
sions could be drawn. First, BMA forecasts could serve as an additional robustness check to our baseline
results. The altered factor is the weighting strategy in the model averaging. Second, the overall outper-
formance of MA over BMA supports the superior effectiveness of our proposed approach. Despite that
no dominant weights may exist in the employed BMA, such an approach is “deterministic” and formula
based. Thus, it cannot cope with the coherent and smoothness penalties. Consequently, the desirable
asymptotic age coherence will be lost for the resulting forecasts, and abrupt changes in mortality fore-
casts are inevitable, even for neighboring age groups. This might also contribute to its observed inferior
forecasting performance to our MA approach.

6. A case study and illustration on annuity pricing
In this section, we comprehensively present a case study by investigating the Italian population using
the examined models. Curves presented in Figure 1 have visualized the dynamics of associated mor-
tality rates. To illustrate the practical usefulness of the proposed MA approach, we demonstrate the
age-specific forecasting results and its long-term forecasting results. We also validate the proposed
objective function of the MA method by contrasting relevant results with those of BMA. An application
on annuity pricing can be found in end of this section.

6.1. Forecasting results
Instead of examining a single metric, we employ the RMSFE over the age dimension to compare fore-
casting performance of each model. Consistent with our baseline setting discussed in Section 5.1, the
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Table 4. Summary of RMSFE over age groups for the Italian population.

Mean Std. Dev. Q1 Q3

STAR 0.1075 0.0859 0.0273 0.1583
LC-H 0.1074 0.0608 0.0460 0.1612
LC-G 0.1106 0.0703 0.0447 0.1580
SVAR-H 0.0931 0.0792 0.0292 0.1518
SVAR-G 0.0948 0.0808 0.0294 0.1557
LC 0.1911 0.3245 0.0553 0.2503
SVAR 0.0930 0.0821 0.0345 0.1567
APC 0.2945 0.2820 0.0650 0.4802
HU 0.1158 0.1002 0.0365 0.1903
RH 0.2003 0.1271 0.1399 0.2425
MA 0.0859 0.0604 0.0260 0.1416
BMA 0.0958 0.0783 0.0287 0.1423
Note: bold numbers are the smallest quantity for each statistic across all models.

training period of 1950–2006 is employed to fit in-sample estimates, and out-of-sample forecasts are cal-
culated for the test period of 2007–2016.3 At each of the 101 one-year age groups (0–100), we calculate
the age-specific RMSFE as

RMSFEx =
√√√√ 1

10

10∑
h=1

(yx,T+h − ŷx,T+h)2.

The results are summarized in Table 4.
In Table 4, it can be seen that the proposed MA approach still leads to the smallest average RMSFE

over ages, with the narrowest variation. Specifically, the mean (standard deviation) of MA’s RMSFE
is 0.0859 (0.0604), over 50% (80%) smaller than that of LC. Thus, for the Italian population, MA can
improve the forecasting accuracy of individuals models in the ensemble.

We explore out-of-sample interval estimates in Figure 4, where the data investigated are the logged
mortality rates averaged out of all ages. The results of MA and SVAR-H, the top two best models as
evidenced in Table 4 are contrasted, and the 95% PIs of MA and SVAR-H are constructed using bootstrap
replicates as outlined in Section 4.2. Clearly, compared to the mean estimates of SVAR-H, those of MA
are overall closer to the true values spanning 2007–2016. This is consistent with our observations in
Table 4. Also, although both PIs manage to cover the true values at all forecasting steps, the width of
MA’s PI is uniformly narrower than that of SVAR-H. This implies that MA is potentially more efficient
than the SVAR-H model. Such a finding is consistent with our discussion in Section 3. Specially, MA
with weights estimated via the forecast error optimization may improve the forecasting uncertainty over
all individual models.

Finally, we display the long-term forecasts as of 2051, a 35-step-ahead horizon in Figure 5. The full
data of 1950–2016 are fitted to provide the estimates of parameters, and forecasts of MA and LC are
generated and contrasted. Compared to the true values of 2016, forecasts of LC in 2051 demonstrate
little improvements on both the very old ages and “accidental hump” (ages 20–25). Such results are
against the observations in Figure 1(a), which suggests significant improvements even for those ages. In
contrast, due to its age-coherence feature, forecasts of MA show more consistent improvements over all

3Note that the data range of 1950–2016 is consistent with our setting in Section 5. This selection is identical to those adopted
in related works, such as Guibert et al. (2019), Gao and Shi (2021) and Li and Shi (2021). The relevant forecasting and modeling
results in those papers and ours are therefore directly comparable. It is worth mentioning that the data availability in Human
Mortality Database has been extended to 2019, at the time of writing this paper. Future studies are advised to adopt the up-to-date
mortality rates for novelty.
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ages. Also, even for a considerably long period of 35 years, no abrupt changes are observed at any ages
for the MA model. This supports the effectiveness of the smoothness penalty of λ2 employed in (4.1).

6.2. Validation of the proposed weighting method
In Figure 1(b), we present the RMSFEx of age-incoherent models over the out-of-sample period 1993–
2006. Those corresponding forecast errors are the core part in the loss to be minimized in (4.1).
Consistent with this, we present RMSFEx of age-coherent models over the same period in Figure 6. To
facilitate the comparison, RMSFEs of five age-incoherent models are grouped together, and their average
value is also plotted (denoted as NC). Summarizing from the two figures, there are two major findings.
First, as stated in Section 1, no single model can uniformly outperform the rest across all age groups. This
validates the necessity of age-specific weights as employed in our MA approach. Second, the RMSFEx
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Figure 6. RMSFEx of fitted models for Italian population: 1993–2006.

of age-incoherent model is overall higher than that of age-coherent models. Specifically, age-incoherent
RMSFEx is quite high over young ages 0–25 and is still among the worst for ages beyond 50. This sug-
gests that with the imposed coherent penalty λ1 in (4.1), the estimated weights of age-incoherent models
may be much lower than those of age-coherent models.

In Figure 7(a), we plot the final estimated weights of the MA model. The dynamics are much consis-
tent with our findings in Figure 6. First, the total weights of age-incoherent models are small, due to their
unfavorable RMSFE across ages discussed above. Also, fitted weights demonstrate much consistent pat-
terns as their RMSFEx. For instance, the weights of SVAR-H and SVAR-G models are increasing over
the oldest age groups, for their smallest RMSFEs at those ages. Additionally, all weights vary smoothly
across ages, due to the impact of smoothness penalty λ2. More importantly, it is verified that no single
model dominates in the identified age-specific weights, which supports the diversity realized by our MA
approach. Last but not least, since SVAR-H and SVAR-G models produce much similar RMSFEx at all
ages, their corresponding weights are close to each other.

We now contrast the MA results to those of BMA. Recall that in Section 5.3, an issue is identified for
BMA, such that abrupt changes are unavoidable, due to the formula-based nature of BMA. To see this,
we plot estimated weights of BMA in Figure 7(a). Clearly, those weights are identical to the proportions
of RMSFEx of an individual model taking in the total RMSFEs at the same age, as shown in Figures 1(b)
and 6. Consequently, rough dynamics are observed for all fitted weights, and sharp changes are observed
in multiple ages. For instance, the weight of LC model in BMA drops from 0.1 to 0.05 from age 0 to
1, and then bounces back to 0.09 for age 2. Further, despite their overall unfavorable performance, age-
incoherent models are still assigned considerably large weights. Averaging over all ages, weights of each
model are close to 0.1, the value of which would have been assumed for a simple average method. As
for the forecasting accuracy, the RMSFEx estimated by the BMA approach is reported in Table 4, the
results are outperformed by the proposed MA counterparts.

In conclusion, to realize the coherent and smoothness penalties, a squared loss on weights will need
to be implemented in the objective function. Consequently, the GMVP structure as adopted in (4.1) is
a simple but effective approach, compared to other alternatives such as the BMA.4 Besides, the incapa-
bility to incorporate those penalties will be faced by a novel approach proposed in Kessy et al. (2021).
Although this stacked regression employ an Elastic NET (ENET) loss, the inclusion of the smoothness

4Note hat if the simple formula approximation is not employed, a BMA approach may incorporate the penalties. However, the
computational cost would be much higher than our MA counterpart, due to the complexity in the associated Markov Chain Monte
Carlo algorithm.
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Figure 7. Fitted weights of the ensemble average and Bayesian model average approaches.

penalty is not straightforward. This is due to the fact that the smoothness penalty is not a standard L2-
type loss, and a more complicated computational approach will need to be implemented (Chang and Shi,
2021). The imposed equality and inequality constraints will further increase the computational cost.

6.3. A financial application: Fixed-term annuity pricing
To demonstrate the practical usefulness of the MA approach, a financial application is presented in this
section. Following Shi (2022b), we consider the pricing of fixed-term annuities using the MA tech-
nique. This product has attracted a growing number of policyholders world-widely, especially those
planning for their retirements. Comparing to the lifetime annuities, fixed-term products pay a predeter-
mined and guaranteed income of higher level with deferrable options (Shang and Haberman, 2017). A
cohort approach, as adopted in Shi (2022b), is employed here to price annuities. To be consistent with
our previous analyses, the maximal survival age is limited to 100.

The specific pricing scheme is explained below. First, the τ year survival probability of a person aged
x at t = 0 is

τ px =
τ∏

j=1

1px+j−1,

where τ 1px+j−1 = e−mx+j−1 and mx+j−1 can be obtained from mortality forecasts. Hence, an annuity with a
T -year maturity and written for an x-year-old person including a benefit $1 per year and conditional on
the survival is priced as

aT
x (mx,1:T) =

T∑
τ=1

PB(0, τ )E(I(Tx > τ )|mx,1:T),

where I( · ) is the indication function, Tx is the survival time and PB(0, τ ) is the price of a τ -year bond with
interest rate set to the yield of annuity. Since E(I(Tx > τ )|mx,1:T) = τ px(mx,1:T), the fixed-term annuity price
is fully determined by the underlying yield and mortality rates. Thus, to accurately price the product, it
is critical to providing precise forecasts of mx,1:T , potentially over a long period. That is, the mortality
experiences of policyholders need to be accurately projected to minimize the mis-pricing risks.

For illustration purpose, we employ up to 35-step-ahead forecasts (from 2017 to 2051) of the pro-
posed MA model. The estimated prices of fixed-term annuities as of 2016 are presented in Table 5. The
calculation is conducted for the Italian population up to the 30-year-maturity, starting from age 65. We
follow Shi (2022b) and present results of the four ages: 65, 70, 75 and 80. Both point and 95% interval
estimates are reported. For simplicity, a constant interest rate of 3% is assumed in all case. Thus, the
only source of uncertainty is limited to the precision of mortality forecasting. Evidenced in Figure 4, the
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Table 5. Predicted fix-term annuity prices for the Italian population.

Age Measure T = 5 T = 10 T = 15 T = 20 T = 25 T = 30
65 Mean 4.530 8.408 11.712 14.502 16.813 18.663

LB 4.528 (−0.04%) 8.403 (−0.06%) 11.699 (−0.12%) 14.474 (−0.19%) 16.705 (−0.64%) 18.436 (−1.22%)
UB 4.532 (0.04%) 8.413 (0.06%) 11.725 (0.11%) 14.526 (0.17%) 16.890 (0.46%) 18.844 (0.97%)

70 Mean 4.499 8.330 11.559 14.229 16.360 17.940
LB 4.495 (−0.08%) 8.318 (−0.14%) 11.535 (−0.20%) 14.136 (−0.65%) 16.150 (−1.28%) 17.589 (−1.96%)
UB 4.503 (0.08%) 8.341 (0.13%) 11.582 (0.20%) 14.300 (0.50%) 16.534 (1.06%) 18.247 (1.71%)

75 Mean 4.440 8.177 11.259 13.714 15.533 NA
LB 4.433 (−0.17%) 8.159 (−0.22%) 11.182 (−0.69%) 13.529 (−1.35%) 15.200 (−2.15%) NA
UB 4.448 (0.16%) 8.195 (0.22%) 11.322 (0.56%) 13.872 (1.16%) 15.823 (1.86%) NA

80 Mean 4.323 7.879 10.705 12.800 NA NA
LB 4.310 (−0.29%) 7.824 (−0.70%) 10.554 (−1.42%) 12.499 (−2.35%) NA NA
UB 4.334 (0.27%) 7.932 (0.67%) 10.841 (1.27%) 13.069 (2.10%) NA NA

Note: this table displays the forecast fix-term annuity price for the average population as of 2016. The forecast mortality rates range from 2017 to 2051. LB and UB stand for the 2.5th and 97.5th percentiles of the prediction
interval, respectively. Mean is the point/mean forecast price. T is the maturity term. Value in bracket is the percentage difference compared to the forecast mean annuity price. We only consider contracts with maturity so that
age + maturity ≤ 100.
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proposed MA technique is more efficient in providing PIs. This supports the small widths observed in
Table 5. As argued in Fung et al. (2015), underpricing of annuities as small as by 0.1% can lead to dra-
matic shortfall in reserving with a large portfolio. Consequently, precisely and efficiently determine the
uncertainty of premium rate is critical for insurers to optimizing their reserves, such that the associated
ruin probability is minimized.

Specifically, a prospective lifetable constructed using the mortality forecast by the MA approach may
largely reduce the longevity risks. As demonstrated in Figure 7, an age-incoherent model like LC may
underestimate mortality improvements of old ages. For pension products, a corresponding prospective
lifetable will then result in an underestimated reserve and thus increase the ruin probability. Using an
age-coherent model like the MA approach to produce such a prospective lifetable will help address this
issue.

7. Concluding remarks
In this study, we propose an effective ensemble or model averaging (MA) approach to study and forecast
logged mortality rates. Three key results can be drawn from our research. First, the proposed MA model
is effective in mortality forecasting by improving accuracy of all individual models in the ensemble.
Altogether, we examine five age-coherent candidates: spatial temporal autoregressive (STAR) model
proposed in Li and Lu (2017), Lee–Carter with hyperbolic (LC-H) and geometric (LC-G) decays stud-
ied in Gao and Shi (2021), sparse VAR with hyperbolic (SVAR-H) decay examined in Li and Shi (2021)
and SVAR model with geometric decays (SVAR-G). Five age-incoherent models are also considered,
including the LC model (Lee and Carter, 1992), SVAR model (Guibert et al., 2019), age-period-cohort
model (Cairns et al., 2009), functional demographic model (Hyndman and Ullah, 2007) and Renshaw-
Haberman model (Renshaw and Haberman, 2006). Our data include 0–100 ages of ten European
populations considered in Li and Lee (2005), spanning 1950–2016. Robust results are also observed
when the forecasting steps, sample period and covered ages are altered individually. As an alternative
model averaging approach, we also explore the model confidence set (Hansen et al., 2011) for mor-
tality forecasting. The improvements in forecasting with our proposed MA approach are consistently
demonstrated in all cases.

Second, the technical properties of MA are presented and discussed. The weights in MA are deter-
mined by optimizing the resulting variance of out-of-sample errors with non-negative constraints to
improve interpretability. The considered out-of-sample error resolves the major issue of the based global
minimum variance portfolio approach, such that the parameter risk is not considered. Moreover, since
the weights are age specific, with a considerably large size of the ensemble space, the diversity is real-
ized to present a potential “winner-take-all” issue. To further avoid overfitting and abrupt changes of
forecast rates over adjacent ages, a smoothness penalty is imposed. Also, we employ a coherent tun-
ing parameter to achieve the desirable age coherence asymptotically. The resulting forecasts of our MA
method are then proved to be asymptotically age coherent. For its averaging nature, the MA approach
can resolve the misspecification issue that each of the individual models may face. This explains its
attractive forecasting performance in the empirical analyses.

Finally, MA can be a useful tool in the practical application. To demonstrate this, we use the Italian
population and present a case study. In particular, interval results indicate that the MA approach may
result in lower forecasting uncertainty than all individual models. Besides, via an analysis on the esti-
mated age-specific weights, we show that the proposed MA approach is more appropriate than popular
alternatives, such as the BMA. A financial application to the fixed-term annuities pricing demonstrates
the usefulness in other practices. For instance, practitioners like insurers may benefit from adopting the
MA technique to improve the reserving accuracy and thus reduce the ruin probability.

Apart from the improved forecasting accuracy, the proposed MA approach can shed light on two
areas to consider for the actuarial practice. First, as plotted in Figure 7(a), age-specific weights illustrate
the relative strength of a model for certain ages. Among the Italian population, for the workforce age
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groups (30–65), the LC-type age-coherent models are preferred, whereas SVAR-type counterparts take
most weights on the oldest ages (90–100). This might suggest that mortality rates of workforce groups
are less prone to the cohort effects, whereas oldest ages are associated with more cross-group impacts.
Consequently, decisions on risk factors, such as the birth year, may have various impacts on all future
ages (some could be insignificant, if the age fall in 30–65), when pricing the premium of the associated
pension products. Second, the proposed objective function presents a simple but effective approach to
handle the modeling errors. Specifically, due to the small sample size, without constraints, randomness
in estimation could be high to reduce the reliability of estimates. Apart from adopting the out-of-sample
forecast errors, our approach employs the coherent and smoothness penalties. Those constraints are
reflective of prior information to effectively reduce the influence of the randomness introduced by small
samples. Implications can be made when computing the solvency capital requirement (SCR) in the
European Union region. For instance, to better improve the reserving efficiency, the SCR may honor
appropriate prior information that is adopted to reduce modeling error for the internal models employed
by an insurer.

There are also some pathways for future research to extend the technical features of the proposed
model. For instance, robust optimization technique (Bertsimas et al., 2011) may be implemented when
solving (4.1) to optimal weights. This may further improves the robustness of the fitted MA, as the size
of out-of-sample forecast error is usually limited. Also, as pointed out in Brouhns et al. (2002), mor-
tality models based on logged mortality rates frequently perform better for young ages and worse for
old ages, compared to those on the original scale. The reason is that the logarithm of observed force of
mortality is much more variable at older ages than at younger ages because of the much smaller abso-
lute number of deaths at older ages. Since life insurance and pension products may be more relevant to
mortality patterns in old ages, age-coherent approaches are to be explored using mortality rates at the
original scale. For instance, in their seminal work, Brouhns et al. (2002) incorporate the LC methodol-
ogy in the modeling of Poisson-distributed death counts via maximum likelihood estimation. Thus, the
LC-H and LC-G approaches may be extended to this framework, to obtain the age-coherent forecasts
considering the additional information of exposure to risk. VAR-type models can be developed based
on the AR models with Poisson response variables (see, for example, Brandt and Williams, 2001). Such
explorations remain for future works.
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