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A b s t r a c t . We present the results of recent work on a model of angular momentum transport in 
thin, ionized, accretion disks. In particular, we consider three physical effects, each of which can 
be represented in terms of a local MHD mode in such a disk. First, we discuss the generation and 
propagation of internal modes within accretion disks, pointing out certain features which make 
them particularly promising as the driving force behind a strong, fast dynamo in accretion disks. 
Second, we point ou that the magnetic shearing instability (MSI) first discussed by Velikhov, and 
more recently by Balbus and Hawley in the specific context of these disks, provides a natural 
saturation mechanism for any disk dynamo, leading to an approximate equality between the 
dimensionless viscosity and the ratio of the dynamo growth rate to the local shear. Third, we 
argue that magnetic buoyancy is largely suppressed by the turbulence generated by the shearing 
instability. This prevents it from removing magnetic flux from the disk any faster than random 
turbulent diffusion. We find that the dimensionless viscosity c* scales as ( t f / r ) 4 / 3 , where H is the 
disk height and r is its radius. 

1. Introduction 

One of the more puzzling problems in astrophysics is the question of how angular 
momentum is transported outward in accretion disks. Such disks are believed to be 
ubiquitous in the universe and to account for a wide variety of energetic phenomena, 
but the basic physics underlying the radial movement of matter remain poorly 
understood. Without an understanding of this process we are unable to understand 
the production of radiant energy in accretion disks or their internal dynamics. Here 
we will report on recent work aimed at producing a working model of angular 
momentum transport in these systems (Vishniac and Diamond 1989; Vishniac, Jin 
and Diamond 1990; Vishniac and Diamond 1992). 

We start with a statement of the problem that we wish to solve. First, we are 
concerned with thin accretion disks, i.e. those for which the disk thickness H is 
much less than the radius r. This is not because we consider thick disks to be 
rare, but because we use ( H / r ) as an ordering parameter. Our model should not 
be extended to disks where this is of order unity. Second, we assume that the local 
rotational frequency Ω is essentially Keplerian, i.e. Ω2 = GM*/r3 . If the disk is 
thin than this is equivalent to assuming that M disk M* Third, we will assume 
that our disks have negligible self-gravity. In other words, their vertical gravity is 
approximately —ζΩ2, where ζ is the distance to the midplane and Ω is the local 
rotational frequency. This implies that M disk <C (# / r )M*. A disk that violates 
this condition will suffer from local gravitational instabilities which are outside 
the scope of this paper. As a consequence of these conditions we have cs ~ Η Ω 
where cs is the sound speed at the disk midplane. Fourth, we ignore any externally 
imposed magnetic field. Fifth, we assume that the disk is perfectly conducting. 
These conditions need not be met everywhere within a disk. Rather we expect that 
our treatment of the problem will be valid for those regions within a disk where 
these conditions are met. Viewed in this light these are not particularly onerous 
conditions and will apply to the majority of visible systems. 
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The traditional treatment of accretion disks relies on the introduction of a phe-
nomenological viscosity given by ν — acsH (Shakura and Sunyaev 1973). We do 
not rely on this approach, but for convenience we will quote our results in terms of 
an equivalent dimensionless viscosity a . 

Our model is built up from a number of discrete elements. First, we argue that 
the physical conditions in accretion disks favor the presence of low m internal waves 
whose amplitude is determined by nonlinear dissipation. Second, we point out that 
such waves are capable of driving an a — Ω dynamo leading to the appearance of 
a large scale, mostly azimuthal, magnetic field. Third, we point out that shearing 
instabilities in this field will cause thé saturation of the dynamo, as well as the 
outward transport of angular momentum. Fourth, we note magnetic buoyancy, fre-
quently cited as an important limitation on the growth of magnetic fields in disks, 
is greatly moderated by the shearing instability so that it is prevented from play-
ing an important role in the field evolution. Finally we present a series of scaling 
arguments for the internal properties of accretion disks based 011 this model. The 
flowchart below illustrates the way the various elements of this model interact to 
drive mass inward in an accretion disk. 
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2. Local Modes 

The process we have outlined above can be seen as the result of the interaction 
of various local modes. Here we briefly list the available modes and their role in 
our model. One critical point is that the physically important frequency is the one 
measured by an observer following local circular orbit. This is ω = w + m ß where m 
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is the azimuthal wavenumber. It is important to remember that this implies that a 
mode with a given frequency will have properties, determined by ώ that change over 
a typical distance of r /m. In listing the available modes we will assume the existence 
of a weak, azimuthal magnetic field. Such a field is generated self-consistently within 
this model. 

The most interesting hydrodynamic modes are internal waves, analogous to deep 
ocean waves. For small m they have a local dispersion relation of 

This implies that such waves are confined between a radius of reflection, where 
ώ2 = Ω2 and a radius of resonant absorption where ώ2 = 0 and the wave energy 
piles up and undergoes nonlinear dissipation. (At a wave approaches this radius it 
is confined to an increasingly thin zone where ώ2 > Ν2.) These waves are strongly 
confined to the region where Ν2 < Ω, i.e. close to the midplane of the disk, but over 
a broad enough region that they will affect the bulk of the disk gas. Moreover they 
are strongly dispersive, so their nonlinear interactions will tend to be incoherent and 
allow a higher wave amplitude. Finally, they are well-suited to driving a dynamo 
(Vishniac, Jin, and Diamond 1990), although there are some subtle points in driving 
a dynamo with waves. In view of these advantages it would appear to be a pity that 
they are typically confined to an annulus of width r /m. Fortunately this limitation 
does not apply to waves with |m| = 1 (or m=0, but such waves turn out to be 
uninteresting for other reasons). Sound waves are also present, but are probably 
uninteresting for reasons given elsewhere. 

A second set of interesting modes are Alfven waves polarized so that they cor-
respond (more or less) to radial oscillations of the field lines. Below we will refer 
to this as the Magnetic Shearing Instability (MSI). These modes turn out to be 
unstable, with a growth rate Γ ~ (m/r)VA with an upper limit somewhat less 
than Ω. This instability was first discovered by Velikhov (1959) and is described 
by Chandrasekhar (1961). Balbus and Hawley (1991) pointed out their significance 
for accretion disks. We have argued elsewhere (Vishniac and Diamond 1992) that 
these modes saturate with perturbation velocities comparable to Va and give rise 
to more or less isotropic MHD turbulence with a maximum scale of ~ VA/Ω. Still 
larger scale modes are suppressed by the smaller scale ones. The resulting turbu-
lence tends to transport angular momentum outward with an effective viscosity of 

Finally, there is the Parker instability with kz ~ 1/H and a growth rate of 
Va/H. We mention these modes only because they have frequently been cited as 
the major factor preventing the growth magnetic fields in disks. However, these 
modes have a short radial wavelength, ~ VA/Ω, imposed by their slow growth rate 
and the rapid differential shearing within the disk. Consequently they are strongly 
disrupted by the MSI. They may survive at some level, but are unlikely to remove 
magnetic flux from the disk faster than turbulent diffusion. 

(1) 

νχ/ςι. 
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3. The Internal Wave Driven Dynamo 

Why are \m\ = 1 internal waves so interesting? First, we note that if a wave is 
excited at some large radius with a low frequency then ώ = Ω — ω is never greater 
than Ω, i.e. internal waves with this property will not encounter a reflecting surface 
as they propagate inward. The excitation of such waves will result from tidal effects 
(Goodman 1992), and may also come from the direct effect of the accretion stream 
itself. In both cases the waves will tend to have ω — u>binary < Ω. 

The second point is that these waves tend to amplify as they propagate inward. 
Their energy flux is a combination of {δ Ρvr), roughly corresponding to the transport 
of some locally measurable energy density moving at the group velocity of the 
waves, and prQ,{vrvo), which is a contribution due to the energy caused by the 
angular momentum carried by the waves. As a wave goes by the mean orbital speed 
of the fluid temporarily decreases, corresponding to a drop in the orbital energy 
of the fluid. The latter contribution to the energy flux is equal to the angular 
momentum flux times Ω. It can be shown that inward propagating internal waves 
with the desired properties are waves that have a positive angular momentum flux 
so the contribution to the energy flux from this term is also positive. Since the first 
term consists of a positive quantity (the local energy density being quadratic in 
the perturbation variables) being transported inward its contribution is negative. 
To linear order both the total energy flux and the angular momentum flux are 
conserved, implying that the second term grows proportionate to Ω and the first, 
being of opposite sign, must also grow. The result is that (ν2) increases as a wave 
propagates inward at a rate of roughly mVgroUplr ~ (H/r)cs. Since the waves are 
confined to the vicinity of the midplane, this linear growth can only be balanced by 
nonlinear dissipation. Internal waves are basically dispersive so we can approximate 
the nonlinear interaction rate as ~ k2(ν2)/ώ. Balancing the linear growth and the 
nonlinear dissipation we conclude that (ν2) ~ (H/r)c2 for these waves. Of course, 
the presence of nonlinear dissipation implies that energy is being transferred to 
higher m modes, a point we will return to shortly. 

Finally, these waves have the capacity to drive an a — Ω dynamo. This is not 
obvious and requires some explanation. Such a dynamo grows through a combina-
tion of shearing and some net helicity contributed by small scale motions. In order 
for growth to occur we need some finite age to generate Br from B$. Given this the 
field will grow at a rate of ( α ^ Ω / ϋ ) 1 / 2 provided that dissipative effects are small. 
By definition a$e = {v z dev r ) / r . At any one moment internal waves can certainly 
contribute a nonzero as#. The dominant contribution will come from waves with 
kz ~ l/H, but it can be shown that such waves will tend to dominate the wave 
spectrum (Vishniac and Diamond, 1989). Of course, a truly periodic wave will give 
a contribution that averages to zero, but these waves are not completely periodic. 
They have a decorrelation rate of ~ ( H / r ) Q due to nonlinear interactions. It is also 
true that if the wave spectrum is balanced, in the sense that waves are as likely to be 
coming from small r as large, then summing over all wave modes gives zero, but the 
wave spectrum will heavily favor waves coming in from large r. Waves traveling the 
opposite direction will tend to diminish, rather than amplify, due to linear effects. 
Also, ingoing waves with suitably small frequencies are easy to generate. Outgoing 
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waves would be expected to have large frequencies and travel only short distances 
before undergoing nonlinear dissipation. The end result is that the \m\ = 1 waves 
will result in α#0 ~ ( H / r ) 3 c s , and a dynamo growth rate ~ (H/r)3/2£l. Including 
contributions from small scale internal waves may increase this growth rate by a 
modest factor. 

When the magnetic field has an infinitesimal strength then the only turbulent 
dissipation is caused by the waves themselves, which are unable to damp the dy-
namo. However, as the field strength increases the MSI takes over. The resulting 
turbulence disrupts the small scale internal waves (thereby lowering T^ynamo and 
increasing the rate of turbulent flux loss from the disk). Saturation is defined by 
Γ dynamo ~ D / Η2 ~ ( V a / c s ) 2 Q . Combining these considerations with a crude model 
for the internal wave spectrum (cf. Vishniac and Diamond, 1992) yields a saturated 
state with Va ~ (üf / r ) 2 / 3c s , and Y dynamo ~ (H/r)4f3Q. The corresponding value 
of dimensionless 'viscosity' is ~ (H / r ) 4 / 3 with a rather uncertain coefficient. We 
note that on scales of ~ VA/Ω a small scale, rapidly varying, field is present which 
is as large (roughly) as the large scale field. 

4. Conclusions 

We have presented a model for a dynamo in accretion disks based on the action 
of internal waves propagating from the outer edge of the disk. As the magnetic 
field grows it gives rise to shearing instabilities which transport angular momentum 
outward and magnetic flux vertically. These instabilities will eventually saturate 
the dynamo when β is still quite large. The resulting angular momentum transport 
is consistent with observations, although the prediction is rather approximate and 
is not strictly equivalent to a local viscosity in any case. From the point of view of 
dynamo theory the interesting feature here is a dynamo model which is nonturbu-
lent, in the sense that the turbulent motions present are not responsible for driving 
the large scale magnetic field. ^From the point of view of accretion disk theory the 
interest of this model is that it provides a way of understanding angular momentum 
transport in accretion disks without resort to phenomenological considerations. 
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