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Abstract

Scientists and philosophers alike debate whether various systems such as plants and bacteria
exercise cognition. One strategy for resolving such debates is to ground claims about nonhuman
cognition in evidence from mathematical models of cognitive capacities. In this article, I show
that proponents of this strategy face two major challenges: demarcating phenomenological
models from process models and overcoming underdetermination by model fit. I argue that
even if the demarcation problem is resolved, fitting a process model to behavioral data is, on its
own, not strong evidence for any cognitive process, let alone processes shared with humans.

1. Introduction
What kinds of things have psychological capacities? Some cases readily inspire
controversy. Mimosa plants, for example, fold their leaves in response to mechanical
disturbance, and properties of their response depend on their relationship to the
stimulus (Gagliano et al. 2014). Whereas novel disturbances elicit more folding,
repeated exposure to a harmless stimulus such as water drops attenuates the
response to the point that the leaves stop folding altogether. The researchers who
produced this effect describe it as habituation, a type of learning that is well studied
in psychology. They further suggest that the mechanisms by which plants learn and
remember are similar to those used by animals, including calcium signaling
and neurochemical transmission. Unsurprisingly, these claims are controversial.
Some botanists argue that such application of neurobiological concepts is based on
“superficial analogies and questionable extrapolations” that do not add to our
understanding of plants (Alpi et al. 2007, 136). Others argue further that plants lack
consciousness, memory, and other psychological capacities attributed to them in the
so-called plant neurobiology literature (Taiz et al. 2019). Similar controversies
surround bacteria and artificial intelligence (Adams and Garrison 2013; Adams 2018).

One strategy for resolving such debates is to ground claims about nonhuman
cognition in evidence from mathematical models of cognitive capacities. For example,
Joo et al. (2021) recently developed a formal model to help address whether rats have
the capacity to evaluate confidence in their own memories and use it to guide
decision making. The breadth and nature of metacognition across species is a source
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of spirited debate (Smith et al. 2014; Carruthers and Williams 2022), and previous
experiments with rats delivered equivocal results. Joo et al. (2021) combine
behavioral data from a spatial memory task with the success of their quantitative
model to justify the claim that rats maximize reward by computing memory
confidence. Given the availability of alternative interpretations that do not posit this
metacognitive capacity, the researchers further argue that the case illustrates the
importance of supplementing behavioral results with formal models. Whether or not
this case is resolved in favor of the metacognitive interpretation, it exemplifies a
general point, made by several other scientists and philosophers, that comparative
cognition research would benefit from a shift toward more mathematical modeling
and focus on quantifiable similarities/differences (Allen 2014; Mikhalevich 2017;
Colombo and Scarf 2020; Farrar and Ostojic 2019; Figdor 2018).

In this article, I highlight several obstacles to inferring the presence and nature of
cognitive processing from mathematical models. Although a few more challenges
arise along the way, I emphasize two in particular: demarcating phenomenological
models from process models and overcoming underdetermination by model fit. Both
are problems for any application of mathematical models in cognitive science, but
they are especially acute in the comparative cognition case. My claim is not that
mathematical models cannot help with discovering nonhuman cognition. Rather,
these general issues in scientific modeling should not be neglected when evaluating
evidence afforded by formal models. Doing so oversimplifies the epistemology of
cognitive modeling and exaggerates the strength of evidence in favor of hypotheses
tested by models (i.e., that some particular cognitive process underlies behavior).
I will illustrate these points in application to Carrie Figdor’s (2018) appeal to formal
models to guide judgments about the extension of psychological predicates beyond
human cases. Her account helps bring into focus various difficulties with drawing
inferences from mathematical models. She claims that quantitative similarity in
behavior revealed by formal models constitutes strong evidence for shared
psychological processes. Arguably, this claim or a qualified version of it is also
implicit in the views of others optimistic about the epistemic benefits of formal
modeling in comparative cognition. Unfortunately, things are not so simple. I argue
instead that even if we solve the demarcation problem and consider only process
models, fitting a process model to behavioral data is, on its own, not strong evidence
for any cognitive process, let alone processes shared with humans.

The next section sketches Figdor’s position on psychological continuity across taxa
and one motivation for concentrating on mathematical models in this context.
Section 3 analyzes her argument for the claim that quantitative similarity in
behavior counts as strong evidence for shared cognition. I show that the notion of
“quantitative similarity” is ambiguous and recommend operationalizing it in terms of
model fit. In section 4 I begin by pointing out that the argument from quantitative
similarity is only plausible with respect to process models. I then argue that
demarcating phenomenological models from process models is a nontrivial task, and
current accounts in the philosophy of science literature are unsuccessful at doing so.
Section 5 adopts a framework for process models from the cognitive science literature
and demonstrates how fitting process models to behavioral data underdetermines
what kind of underlying process generated the data. I conclude with a brief discussion
of why the boundary between phenomenological models and explanatory models is
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blurrier in cognitive science than in other sciences. The upshot is that philosophical
accounts of phenomenological modeling have been overly focused on cases in physics,
rendering them ill-suited for cognitive science. I further suggest that background
theories within specific sciences influence whether models are judged phenomeno-
logical or not.

2. Other minds and mathematical modeling
Figdor claims that due to various empirical discoveries, there is increasing pressure to
reconsider the meaning and reference of psychological predicates. Traditional
semantics of psychological predicates are anthropocentric and no longer scientifically
respectable.1 As she sees it, “[A]ll the relevant scientific evidence shows that
psychological capacities are possessed by a far wider range of kinds of entities than
often assumed” (Figdor 2018, 5). In support of this conclusion, she describes some
empirically discovered behaviors of plants and bacteria that the researchers
characterize psychologically (e.g., bacteria learning about their environments).
However, her argument rests primarily on cases in which researchers also fit formal
models to their behavioral data.

By Figdor’s lights, a key advantage of mathematical models is that they can
powerfully challenge anthropocentric intuitions about what counts as cognition.
In her view, “[A] mathematical model provides strong evidence that two domains
have important similarities whether or not intuition agrees” (ibid., 135). Consider,
for instance, the fact that neuroscientists frequently describe neurons as predicting
stimuli. It may seem odd to think of neurons as formulating predictions like
whole animals, but Figdor argues that such impressions are an unreliable guide.
Mathematical models help guard against the bias of intuitions by revealing
quantitative similarity in behavior. Such similarity is independent of qualitative
similarity to humans and supports inferences to shared cognitive processes.
Regardless of whether Figdor is right about anthropocentrism and formal modeling
as a remedy for it, the claim that mathematical models provide strong evidence for
psychological similarity is intriguing and worth exploring.

3. Inferring shared cognition from quantitative similarity
Figdor discusses only two types of formal models in depth: the temporal difference
(TD) model and the drift-diffusion model (DDM) used in decision-making studies.
I’ll describe the former case in more detail but summarize her conclusions regarding
both. Making explicit how she reasons from specific modeling results will reveal some
conceptual and metaphysical difficulties in interpreting mathematical models and
their data. However, I will show in this section how these initial obstacles can be
overcome.

The TD model was introduced by Sutton and Barto (1987) as an improvement over
the well-known Rescorla–Wagner model used to explain results from classical
conditioning experiments. Although both models are specified by equations that

1 This starting point is controversial. Machery (2020) argues that there is little evidence for
widespread anthropocentrism as far back as the nineteenth century. Though see Buckner (2013) for a
discussion of “semantic anthropocentrism” in comparative psychology.
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describe the strength of association between a conditioned stimulus (CS) and an
unconditioned stimulus (US), the TD model also represents changes in associative
strength within trials. By capturing these changes in real time, as opposed to between
discrete trials, the TD model can predict animal behaviors in a wider range of
experimental conditions.

Briefly, the model works as follows.2 At each time step, the algorithm uses a
representation of available stimuli to formulate a prediction about upcoming USs. It
compares this US prediction with the US prediction formulated at the previous time
step. The comparison yields the temporal difference that is then compared to any actual
US received. The value of this second comparison is the prediction error at that time
step. Prediction errors are then used to update the weight on each element of the
stimulus representation and thereby drive learning.

Although the TD model was originally developed for classical conditioning
experiments with lab animals, it turns out that it can also model some neural activity.
Based on a series of experiments in the latter half of the twentieth century,
neuroscientists theorized that midbrain dopamine (DA) neurons process reward
prediction errors (Schultz et al. 1997). Through electrophysiological recordings in
monkeys, it was shown that unexpected rewards boost DA neuron activity. However,
as animals learn that reward is associated with a prior CS, DA neurons gradually
respond less to the reward. They instead fire selectively upon presentation of the CS.
If well-trained animals expect a reward and it is omitted, activity is suppressed. These
results have since been replicated in rodents and humans, and the reward prediction
error model is still widely accepted (Schultz 2016). Given the TD model’s reliance on
prediction errors and success with classical conditioning, it wasn’t long before
neuroscientists tried using it to understand DA signals.

Suri and Schultz (2001) trained an artificial neural network with the TD learning
algorithm under conditions used in previous monkey experiments. They then
compared the model’s performance with electrophysiological data collected from
monkeys. They found that the model’s reward prediction error signal reproduced
characteristics of midbrain DA neuron activity, while its reward prediction signal
resembled cortical and striatal activity. For example, after the model was trained on
one CS followed by reward, its reward prediction signal was boosted upon CS
presentation compared to pretraining, and the signal progressively increased until
reward onset. Putamen neurons show the same pattern of activity in monkeys trained
on the task. The model also reproduced features of electrophysiological data from a
more complicated task involving three different CSs and two types of reward.

What should we make of such findings? In this case, Figdor (2018, 53) concludes
that “real neural populations appear to be adaptive elements that learn to predict
future rewards in the quantitatively similar sense that humans, monkeys, rats, and
other adaptive elements do.” She goes on to say, “[The TD model simulation] is finding
structure in neural behavior that is quantitatively analogous to the structure of
reinforcement learning in a behaving animal” (ibid., 53–54). In her response to a critical
notice, she characterizes shared structure in behavior as a “criterion” for inferences to
cognition (Figdor 2020). Regarding the DDM, she says, “[It] captures in formal terms the
dynamics of the behavior from which we infer to [human] decision-making. We then

2 For a thorough guide with the formal details, see Ludvig et al. (2012).
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use this formal structure as a criterion for inferences to decision-making in other cases”
(ibid., 692). Based on a study in which researchers fit the DDM to behavioral data from
fruit flies (DasGupta et al. 2014), Figdor infers that fruit flies make decisions. As she puts
it, “[G]iven its fit to both human and fruit fly data, the model helps justify the ascription
of decision-related component cognitive processes posited by the model (e.g., evidence
accumulation) to the intended target populations of decision-makers” (Figdor 2018, 47).
Such inferences are defeasible because justifying is weaker than proving: “Satisfying the
DDM does not prove fruit flies make decisions (though it is an excellent source of
confirmatory evidence)” (Figdor 2020, 692).

An immediate problem with the above proposal is that it’s unclear when behaviors
from systems in different taxa count as quantitatively similar. Because no two
datasets are identical, we need some way of deciding when they are similar enough to
justify inferences to shared psychological capacities. Several of Figdor’s passages
suggest that fitting the same formal model structure to different behavioral datasets
is sufficient to count behaviors as quantitatively similar. However, she repeatedly
characterizes scientific models as revealing structure in the world. For example,
in addition to the preceding passage describing the TD model as “finding structure
in neural behavior” (Figdor 2018, 53), she says, “indeed, social scientists are busy
employing network modeling tools to explore the structure of human social
relationships” (180). Behaviors may instead be considered sufficiently quantitatively
similar when they have the same formal structure. Whichever interpretation Figdor
intended to endorse, I will clarify the distinction in the text that follows and argue in
favor of the first option.

Describing quantitative similarity in terms of shared formal structure trades one
concept in need of operationalization for another. Without further explication of
“formal structure,” it brings us no closer to determining when behaviors from
systems in different taxa are quantitatively similar enough to infer shared cognition.
Focusing on the formal structure of behavior also invites metaphysical worries. Taken
literally, the idea that behaviors instantiate mathematical structure is an
assumption about the way in which mathematical entities exist, and that is a
topic of controversy in the philosophy of mathematics.3 Mary Leng (2010), for
instance, denies that mathematical entities exist at all, precluding their
instantiation in the world. Another ontological possibility coming from the
philosophy of science literature is that mathematical structure is a feature of
models but not their targets. So-called discoveries of mathematical structure in
behavior are just conceptual reifications “mistaking an aspect of a model—its
structure, its construal, or the union of both—for an aspect of empirical data or the
natural world; mistaking the math for the territory, so to speak” (Andrews 2021, 29).
Several analyses from philosophers help make sense of how theoretical models can
be useful in science despite containing descriptions and equations that are true of
no object (e.g., Potochnik [2017]; Cartwright [1983]; Toon [2012]; Rice [2015]) or only
partly true (Levy 2015).

3 Talk of objects or systems “instantiating” mathematical structure is common in that literature, and
Figdor (2018, 53) uses this expression when describing the study by Suri and Schultz: “They used the
network to model dynamic structure instantiated by real neural populations in prior neurophysiological
research.”
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The assumption that mathematical structures are instantiated in nature is also ill-
defined. What does it mean for a mathematical structure to be “in” or “instantiated
by” (the behavior of) a system? One possibility is that mathematical structures are
abstract entities that exist independently of the physical world, and physical systems
sometimes exemplify their structures (Shapiro 1997). An alternative is that there
exists some structural relation (isomorphism, homomorphism, etc.) between a
physical system and a mathematical system, though the latter need not exist as an
abstract entity (Pincock 2012). Several other possibilities are defended in the
philosophy of mathematics literature. Interpreting scientific models as revealing
mathematical structure in the world shoulders these metaphysical burdens, but that
is unnecessary for explaining the success of models and operationalizing quantitative
similarity.

By contrast, model fit is well-defined given standard techniques for fitting models
to data. There is nothing metaphysically mysterious about fitting formal models to
data. Whether models fit data doesn’t hinge on the possibility that mathematical
structures are instantiated by target systems or an account of what that means.
Of course, choice of fitting method will influence how well a model fits experimental
data, and there is always room for debating how much goodness of fit is good enough
within a context. But the concept of fit is still rooted in modeling practice and
therefore poised to operationalize quantitative similarity. Figdor more often
describes formal models as applying to various domains, but fit is a more appropriate
concept because it is understood that fit is a matter of degree. Talk of models applying
suggests an all-or-none relation. In sum, I recommend operationalizing quantitative
similarity with model fit because unlike Figdor’s current account, it makes precise the
cases under consideration and circumvents orthogonal debates in the philosophy of
mathematics.

We are now ready to evaluate the following claim:

(QS) Quantitative similarity in behavior constitutes strong evidence that
different systems share specific psychological processes.

Behaviors from systems within or across taxa count as quantitatively similar when a
mathematical model fits their data, and the psychological processes at stake are
specified in the hypothesis tested by the model. We may further assume that (QS)
applies only to cases in which the data under comparison are from the same kind of
behavioral task. Importantly, Figdor’s account is not so much a target here as a
launchpad for critically assessing when mathematical models provide compelling
evidence about cognitive processes. Anyone interested in debates over nonhuman
cognition might find (QS) appealing.

4. Phenomenological versus process models: a blurry boundary?
Model fit is not a reliable guide to cognition in general because it matters what kind of
formal model is being fit. Some models such as Snell’s law are phenomenological in
the sense that they have instrumental value (e.g., aid in prediction) but reveal nothing
about underlying processes or mechanisms (Bokulich 2011). Phenomenological
models are usually constructed by fitting a model structure to data ad hoc. Although
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phenomenological models are often discussed in the context of physics, psychologists,
and neuroscientists also use the concept (Luce 1995; Mauk 2000; e.g., Bassett et al.
2018). Despite their instrumental value, phenomenological models in cognitive
science neither describe nor provide evidence for internal cognitive processes.
Instead, they formally redescribe a target system’s behaviors or interactions. Thus,
(QS) is false as a general claim about formal models in cognitive science. If fitting a
phenomenological model isn’t evidence for any psychological process, then fitting
one to behavioral data from another system isn’t evidence that the two systems share
any specific psychological process.

Once phenomenological models are taken into consideration, (QS) is only plausible
as a claim about models that represent possible cognitive processes underlying
behavior. Following the lead of cognitive scientists, let’s call these models “process
models.” Unfortunately, beyond this basic characterization, there is no agreed upon
definition of the term or consensus on which models count as process models (Jarecki
et al. 2020). In the following text, I will argue that standard accounts in the philosophy
of science literature fail to demarcate phenomenological models from process models.
I’ll demonstrate this with the example of linear models in mathematical psychology.
I chose models fit to behavioral data from humans to underscore the problem faced by
researchers in comparative cognition. If it is unclear whether models of human
cognitive capacities are phenomenological, all the worse for models fit to data from
plants, insects, and so forth where the presence of cognition is in question. The upshot
is that contrary to Figdor’s suggestion, quantitative similarity is not readily applicable
as a criterion for inferences to cognition.

Linear models in mathematical psychology began proliferating in the 1960s.
Hoffman (1960) first proposed that judgments in decision-making tasks could be
modeled as linear functions of cues. Subjects in a typical task are given a set of cues
either sequentially or simultaneously and asked to predict an outcome or value of
some property. In one of Hoffman’s tasks, for example, subjects used nine cues about
100 persons such as their high school rating and mother’s education level to judge
their “intelligence.” The structure of a linear model is a weighted (usually multiple)
linear regression equation in which variables represent cues, and weights represent
the significance subjects assign to each variable with respect to what they’re judging.
Hoffman showed that such models accurately predict the judgments of subjects, and
the result was replicated many times over in various tasks (see Dawes and Corrigan
[1974] for references and discussion). Linear models of judgment are also building
blocks of the lens model equation, which is used extensively in learning studies
(Karelaia and Hogarth 2008). The equation is a formalization of Brunswik’s (1952) lens
model, and it is useful for quantifying how much different variables influence the
accuracy of judgments. For instance, Luan et al. (2020) recently showed that people
judge the monetary value of objects more accurately when cues are presented
sequentially instead of simultaneously. They then performed a lens model analysis to
demonstrate that the improvement was primarily due to increased consistency in
judgments.

Although it is possible that subjects solve linear functions in their minds to reach
judgments in decision-making tasks, and some researchers have defended this sort of
conclusion (Einhorn et al. 1979; Goldberg 1971; Payne et al. 1993), the evidence is
hardly decisive. Indeed, when Hoffman (1960) proposed using linear models of
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judgment, he called them “paramorphic representations” to emphasize that it’s
unclear whether they accurately represent underlying mental processes. In the more
recent literature, psychologists typically say people behave as if they use a linear
model in these tasks (Hogarth and Karelaia 2007).4 Some take a firmer stance,
claiming that linear models merely predict judgments without capturing the
cognitive operations leading to them (Glöckner and Betsch 2011), or attempt to
explain away the success of linear models (Dawes 2018; Dawes and Corrigan 1974).

Here I’ll just give a couple reasons for remaining skeptical of the claim that linear
models accurately represent internal cognitive processes. First, linear models aren’t
based on any biological mechanisms. In the terminology of Marr’s (2010) framework,
there is no evidence that any neural mechanisms implement an algorithm computing
the hypothesized linear functions. Some degree of looseness between levels of
description is both tolerable and expected (Allen 2014), but in this case an
implementation story is completely absent. Second, heuristic models, which don’t
consist of linear functions, can also fit the same data and in some cases fit even better
(Gigerenzer and Goldstein 1999). They are also arguably more psychologically
plausible with respect to properties such as computational tractability (Gigerenzer
et al. 2008). For example, some heuristic models predict judgments based on fewer of
the available cues compared to linear models (Hogarth and Karelaia 2007). Instead of
solving linear functions in decision-making tasks, it is possible that people utilize
various heuristics. Though it should be stressed that the options aren’t exclusive.
There is evidence that people switch strategies depending on the circumstances,
including within an experimental task (Lee et al. 2019; Newell et al. 2003).

The preceding discussion provides a test case for philosophical accounts of
phenomenological models. Linear models of judgment fit behavioral data from
humans engaged in cognitive tasks, but are they merely phenomenological models?
Early writings in philosophy of science cast phenomenological models as independent
from theory. However, Margaret Morrison (1999) has persuasively argued that this
view is inadequate (see also Frigg and Hartmann 2020). In the more recent literature,
philosophers typically characterize phenomenological models by appealing to what
they describe and whether they count as explanatory. These features are
complementary, but let’s consider them in turn.

According to Kaplan and Craver (2011), the signature of phenomenological models
is that they describe behaviors of systems but not the mechanisms underlying their
behavior. A problem with this criterion and any other based on description is that
what a model represents arguably depends on the intentions of its user (Giere 2010;
Callender and Cohen 2010; Weisberg 2013). In the case of linear models, many
psychologists take them to redescribe behavior, whereas Einhorn et al. (1979) claim
that linear models represent underlying cognitive processes, albeit at a higher level of
abstraction than models specifying algorithms. Thus, the very same model might be
classified as phenomenological or not depending on whom you ask. Even if
agent-based accounts of scientific representation are wrong, the fact remains that
scientists sometimes disagree about what models represent. Given the possibility of
disagreement, appealing to what models describe fails to settle whether some are

4 See van Rooij et al. (2018) for more on “as if explanations” in psychology, including an analysis of the
many possible meanings of “as if” in this context.
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phenomenological or process models. The same reasoning extends to accounts that
emphasize what phenomenological models aim at (e.g., Bokulich [2011]).

Explanatory status also supports opposing classifications because when models
count as explanatory—in the sense of answering why certain things happen—is
emphatically disputed. Proponents of the mechanistic framework argue that models
across the mind-brain sciences have explanatory force only to the extent that they
describe details of mechanisms. Their case studies include models in cognitive
science (Kaplan and Bechtel 2011), psychology (Piccinini and Craver 2011), cognitive
and systems neuroscience (Craver and Kaplan 2020; Kaplan and Craver 2011), and
computational neuroscience (Kaplan 2011). Unsurprisingly, others have found their
mechanistic demands on explanatory adequacy overly narrow. These critics highlight
other explanatory patterns in the mind-brain sciences, including functional
explanations (Weiskopf 2011), dynamical explanations (Ross 2015; Silberstein and
Chemero 2013), computational explanations (both causal and noncausal) (Chirimuuta
2014; Serban 2015; Chirimuuta 2018), and topological explanations (Kostić 2018; Kostić
and Khalifa 2023). Depending on one’s views about sources of explanatory force, linear
models may be classified as phenomenological or process models. Even if it is granted
that they are explanatory in some sense, there is room for disagreement about which
kinds of explanation matter for being a process model.

In this section I’ve argued that (QS) is false because phenomenological models in
cognitive science provide no evidence for psychological capacities. Rescuing (QS)
depends on limiting its scope to process models, yet current philosophical accounts
fail to demarcate phenomenological models from process models. This hampers
the usefulness of quantitative similarity as a criterion for inferences to cognition.
(QS) may be true of process models, but neither Figdor nor the modeling literature
in philosophy of science make clear which ones those are. The situation seems
to fit Morrison’s (1999) view that the distinction between phenomenological and
theoretical models is of dubious philosophical value because it is difficult to draw a
sharp boundary between the two.

In response, one might argue that even if it’s unclear whether a mathematical
model is phenomenological or not, the fact that it fits behavioral data from different
systems supports the inference that they share some underlying cognitive process.
It just doesn’t reveal which one. Such inferences are problematic, though, in light of
what Taylor et al. (2022) call the “many-to-one mapping problem”: Different possible
cognitive processes can generate any particular behavior. A better strategy is to
distinguish process models in a way that helps modelers cope with the many-to-one
mapping problem. That might salvage (QS) by weeding out phenomenological models,
and more generally, it doesn’t give up on the intuitively valuable distinction between
phenomenological and explanatory models. Fortunately, more promising ways of
distinguishing process models can be found in the cognitive science literature.

5. Fitting and comparing process models
I propose adopting the conceptual framework developed by Jarecki et al. (2020).
In my view, it offers the most thorough characterization of process models in the
current cognitive science literature and evades the problems outlined in the previous
section. Like previous proposals, they claim that process models represent testable
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assumptions about how cognitive systems transform inputs. They call this the
“intermediate stage” between stimulus input and behavioral output. So far, this is too
flexible. Linear models arguably represent the assumption that people transform
inputs by computing linear functions during decision-making tasks, and that is a
testable hypothesis in the sense that linear models will fit (within some degree of
goodness) behavioral choice data or not. Or perhaps linear models are merely
phenomenological because they formally represent overt choice behaviors and
nothing more. The blurry boundary strikes again. However, Jarecki et al. (2020) add
the further condition that process models must make separate predictions at two
levels: behavioral output and the intermediate stage. The theoretical significance of
the latter kind, called “process predictions,” has also been urged by other cognitive
scientists (Pachur et al. 2013; Sun 2008; Johnson et al. 2008). Process predictions
include predictions about attention, speed, error types, and so forth. They are specific
to models (e.g., the DDM predicts reaction time distributions), but all are
consequences of the cognitive process hypothesized by modelers. Note that process
predictions, like behavioral output predictions, are typically about behavioral
measures. Which behaviors correspond to each type of prediction is defined within a
modeling context. One modeler’s behavioral output prediction may be another’s
process prediction.

The preceding summary leaves out important details of the framework, but it is
enough to demonstrate that process models are distinguishable in a principled way.
To see this, consider the following points. If a hypothesis about cognitive processing
successfully predicts only one kind of behavior, then it is no more plausible than any
competing hypothesis that makes the same prediction. As mentioned earlier, both
linear and heuristic models of judgment predict the same choices made by people in
some decision-making tasks, but they are based on competing hypotheses about the
causal processes underlying those choices. Process predictions help deal with the
many-to-one mapping problem by providing further points of comparison between
models, allowing modelers to test competing hypotheses when they explain other
data equally well. Models that fail to make process predictions might still accurately
represent cognition at some level of abstraction, but they are too underspecified to be
rigorously tested.5 Jarecki et al. (2020) apply their framework to demonstrate that at
least one heuristic model of judgment qualifies as a process model, whereas equal
weighting models (a species of linear models) do not. Because the details matter,
every model type must be inspected individually to determine whether they meet the
proposed criteria for process models.

The remainder of this section argues that (QS) is still false when charitably
interpreted as a claim about process models. Fitting a process model to behavioral
output data is, on its own, not strong evidence for any cognitive process, let alone
shared processes. As examples of process models, I’ll use DDMs and Bayesian models
of perceptual decision making. According to the previously mentioned framework,
every DDM qualifies as a process model because they represent a specific process of
evidence accumulation toward decision boundaries (see Ratcliff and McKoon [2008]

5 A stronger view is that such formal models are devoid of conceptual content and neither express nor
test anything about cognitive processing. See Smith et al. (2016) for a defense of this view based on
competing formal models in animal metacognition research.
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for details), and they make separate predictions about choices (behavioral output) and
reaction time distributions (intermediate stage). The Bayesian model built by Bitzer
et al. (2014) and further developed by Fard et al. (2017) is also a process model of
decision making in two-alternative forced choice tasks. Instead of the diffusion
process represented by DDMs, Bayesian models assume that cognitive systems
generate predictions about stimuli and compare them to noisy input. An inference
mechanism calculates the likelihood of each stimulus alternative given the
observations up to some timepoint. The calculated posterior beliefs are then
compared to a decision policy that determines what choice will be made.
The Bayesian models developed by Bitzer and colleagues also make independent
predictions about choices and reaction times.

It turns out that under certain assumptions about the parameters, it is possible to
“translate” DDMs into Bayesian models that make the same predictions and vice versa
(Fard et al. 2017; Bitzer et al. 2014). More specifically, from parameters estimated by
behavioral data in one kind of model, one can determine what parameters the other
kind of model should take to predict the same choices and reaction time distributions.
These models have distinct formal structures, including different numbers of
parameters. Thus, they are not “exactly the same mathematical thing” or “simple
rotations of each other” as Smith et al. (2016, 1347) argue is the case in their example
of competing two parameter models. The DDMs and Bayesian models also make very
different assumptions about the decision-making process as summarized in the
previous paragraph. In the terminology adopted by Figdor (2018), their model
construals are completely different.

Despite good fit to both behavioral output and process data, the kind of cognitive
process generating decisions in forced choice tasks is underdetermined. From fit
alone, we do not have strong evidence either that target systems use a sequential
sampling process represented by DDMs or that they formulate predictions and use
Bayesian inference to calculate the likelihood of each stimulus. That is why Bitzer
et al. (2014) emphasize a theoretical virtue of their Bayesian models: Unlike DDMs,
they explicitly model how sensory input is converted into evidence. Fard et al. (2017)
further motivate translating DDMs into Bayesian models by showing that modeling
input more precisely leads to improved fit. These dialectical moves reflect an
understanding among researchers that epistemic considerations beyond good fit are
necessary for motivating their theoretical accounts. Though it is worth recognizing
that, historically, many psychologists have supported theories primarily by
demonstrating model fit (see Roberts and Pashler [2000] for a widely cited critique
of the practice).

Cognitive scientists further acknowledge the epistemic limitations of model fit by
emphasizing the importance of comparing models. Busemeyer and Stout (2002, 260)
make the point sharply: “It is meaningless to evaluate a model in isolation, and the
only way to build confidence in a model is to compare it with reasonable
competitors.” I’ll conclude my rejection of (QS) by drawing attention to the fact that
model comparison adds yet another layer of epistemic challenges. An initial problem
is that the best fitting model is not always the most accurate. If researchers simply
pick the model that fits their data best, they will end up choosing overly complex
models. (Relevant factors of model complexity include the number of parameters
and functional form.) The result has been mathematically proven in simulation
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studies. As long as there is some error in the data, which is inevitable in
experimentation, more complex models will fit better than the model that generated
the data (Myung 2000; Pitt and Myung 2002). Such models are overfit. They fit a
particular dataset well but are sensitive to random error in it, so they are unlikely to
fit new data.

Because a good fit can mislead researchers into favoring the wrong hypothesis,
model selection techniques are used to achieve a balance between goodness of fit and
complexity (see Myung et al. [2016] for a recent review). However, there are many
factors to consider when picking a model selection method. The reliability of some
methods depends on sample size (Busemeyer and Wang 2000). Different classes of
methods often disagree on which competing model is best because they seek out and
punish different properties, and consistency between them further depends on
circumstances such as effect size (Evans 2019). There are also broader methodological
issues at play. Bayesians argue that their techniques for assessing the credibility of
model parameters are better at deciding between competitors than model selection
methods that attempt to balance goodness of fit and complexity (Kruschke 2011;
Kruschke and Liddell 2018).

If fitting a process model is not strong evidence that humans use some cognitive
process, then discovering that the same model fits behavior of some nonhuman
systems is not strong evidence that they share that cognitive process with humans.
Further epistemic considerations are necessary for strong confirmation of hypotheses
about what kind of underlying process generates behavior. Exactly what consid-
erations and how they should be weighted are topics that deserve thorough analysis
elsewhere. However, the preceding discussion indicates that model selection
techniques have a key role to play, and circumstances matter (sample size, effect
size, etc.). Though it should be stressed that no model selection method is optimal in
all cases (Evans 2019), and choices should arguably be guided by the variable goals of
researchers (Kellen 2019; Navarro 2019).

In this section I’ve concentrated on how model fit underdetermines the nature of
cognitive processing and the many epistemic issues involved in selecting a model
among multiple that fit the same data. Importantly, this kind of underdetermination
is no threat to scientific realism. Underdetermination arguments against scientific
realism rest on all epistemic considerations failing to direct theory choice. Model fit is
just one of many considerations. At most, the epistemic limitations of model fit
suggest cases of “practical” underdetermination (see Turnbull [2018] for a useful
taxonomy of underdetermination). According to this relatively weak form of
underdetermination, present evidence fails to direct theory choice, and that is fully
compatible with scientific realism. Thus, my argument doesn’t rely on any antirealist
maneuvers. Scientific theories may (eventually) track truths about cognitive
processes underlying behavior, but formal modeling is no silver bullet.

6. Concluding remarks
Mathematical models may bolster evidence for cognitive capacities in nonhuman
systems, but they also introduce complications of their own. Some are metaphysical
such as the question of whether mathematical structure is a property of models and
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their targets or just models. Failure to distinguish these possibilities and other
modeling concepts (e.g., model structure vs. model construal) is a source of confusion
among scientists and philosophers (Andrews 2021). Others are more methodological.
What counts as “quantitative similarity” and why is it a relevant kind of similarity for
inferring shared psychological processes? These questions indicate a general burden
on philosophers analyzing implications of modeling results: Notions that aren’t well
defined within the considered studies require explication and justification (cf. Bickle
[2008] on metascience). Furthermore, drawing inferences about modeling results
without attending to more general issues in scientific modeling is hasty. Here I’ve
concentrated on phenomenological modeling and underdetermination, but the same
conclusion is also defensible by considering issues regarding scientific representation
(Drayson 2020).

The problem of underdetermination by model fit is one epistemic challenge that
cognitive modelers have addressed by adopting model selection techniques.
However, I hasten to emphasize that there is no simple story about how model
selection takes place in cognitive science or any straightforward solution to the
problem. Again, no currently available model selection method is optimal, and
under some conditions there are no practical differences between them (Evans
2019). This highlights the need for further epistemic considerations (process
predictions, mechanistic evidence, etc.) and perhaps nonepistemic values, but how
they should be jointly assessed is an open question. My preliminary suggestion is
that the weight of each type of evidence should be sensitive to the kind of system in
question. For example, mechanistic similarity may be a useful criterion for inferring
shared cognition in other mammals, but misleading when applied to more distant
relatives where very different mechanisms might have evolved to achieve
similar ends.

Elucidating what distinguishes phenomenological models from process models is
perhaps a manageable problem. The fruitfulness of Jarecki et al.’s (2020) framework
remains to be seen, and future proposals may improve upon theirs. But the
underdetermination of cognitive processing by model fit is a hard barrier to directly
inferring shared cognition from quantitative similarity in behavior. Both phenome-
nological modeling and underdetermination are classic topics in general philosophy
of science with extensive literatures. However, general issues can play out in different
and interesting ways across the sciences. I conclude by briefly reflecting on why
current philosophical accounts deliver a blurry boundary between phenomenological
and process models in cognitive science.

An uninspired remark is that philosophical attempts at demarcating kinds of
models rest on intuitions about what models represent and when they count as
explanatory. Such intuitions are bound to generate controversy. However, the case of
linear models suggests a more interesting explanation of the hazy boundary.
My suspicion is that any formalism that accurately describes behavior is a how-
possibly model given the computational theory of mind. According to this theory,
cognitive systems are the kinds of things whose behavior is governed by internal
algorithms computing functions. Given this theoretical framework, any mathematical
model fit to behavioral data is doubly interpretable as a representation of
both behavior and internal processing that causes behavior.
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By contrast, consider the case of light. No one thinks its behavior is determined
by internal computations. Hence, Snell’s law is uncontroversially judged a
phenomenological model (Kaplan and Craver 2011). Although it is useful as a formal
representation of light behavior and aids in predicting how light will refract, no one is
tempted to think that Snell’s law explains why light behaves as it does.
Stephan Hartmann’s (1999) account of models and stories is insightful here. He
argues that stories inspired by an underlying fundamental theory (but not deduced
from it) play an important role in model acceptance. Stories told around the
formalism fit a model into the broader framework of the fundamental theory, and
there is no good model without such a story. In this terminology, what distinguishes
mathematical models in cognitive science from Snell’s law and other phenomeno-
logical models in physics is that stories linking models of behavior to a dominant
background theory (i.e., the computational theory of mind) are readily available.
Consequently, any cognitive model which formally describes a system’s behavioral
data is also a how-possibly model. It is a plausible possibility that the system
computes the function specified by a well-fit model, and this would help explain its
behavioral data, especially when supplemented with an algorithm by which the
function is computed. (See Egan [2017] for more on function-theoretic characteriza-
tion as an explanatory strategy in cognitive science.) Not so for formal models of light
behavior. This allows a relatively clear boundary between phenomenological models
and explanatory models in the case of light and perhaps physics more generally.

Given that philosophical thinking about phenomenological modeling has been
so concentrated on models in physics, it is unsurprising that current accounts are
ill-suited for cognitive science. Hopefully, this article encourages more philosophical
work on phenomenological models, process models, and model selection, specifically
in cognitive science.

Acknowledgments. An anonymous reviewer for this journal provided careful feedback that improved
this article. I am grateful to Mazviita Chirimuuta, Arnon Levy, and especially Colin Allen for helpful
discussions and comments on earlier versions. I also benefited from conversations with Mel Andrews, Gal
Ben-Porath, Nuhu Osman Attah, and members of Colin’s writing group in the spring of 2023.

References
Adams, Fred. 2018. “Cognition Wars.” Studies in History and Philosophy of Science Part A 68: 20–30.

https://doi.org/10.1016/j.shpsa.2017.11.007 and https://www.sciencedirect.com/science/article/pii/
S0039368117302741.

Adams, Fred, and Rebecca Garrison. 2013. “The Mark of the Cognitive.” Minds and Machines 23 (3):339–52.
https://doi.org/10.1007/s11023-012-9291-1.

Allen, Colin. 2014. “Models, Mechanisms, and Animal Minds.” Southern Journal of Philosophy 52 (S1):75–97.
Alpi, Amedeo, Nikolaus Amrhein, Adam Bertl, Michael R. Blatt, Eduardo Blumwald, Felice Cervone, Jack

Dainty, Maria Ida De Michelis, Emanuel Epstein, Arthur W. Galston, Mary Helen M. Goldsmith,
Chris Hawes, Rüdiger Hell, Alistair Hetherington, Herman Hofte, Gerd Juergens, Chris J. Leaver,
Anna Moroni, Angus Murphy, Karl Oparka, Pierdomenico Perata, Hartmut Quader, Thomas Rausch,
Christophe Ritzenthaler, Alberto Rivetta, David G. Robinson, Dale Sanders, Ben Scheres, Karin
Schumacher, Hervé Sentenac, Clifford L. Slayman, Carlo Soave, Chris Somerville, Lincoln Taiz, Gerhard
Thiel, and Richard Wagner. 2007. “Plant Neurobiology: No Brain, No Gain?” Trends in Plant Science
12 (4):135–36. https://doi.org/10.1016/j.tplants.2007.03.002.

Andrews, Mel. 2021. “The Math Is Not the Territory: Navigating the Free Energy Principle.” Biology &
Philosophy 36 (3):30. https://doi.org/10.1007/s10539-021-09807-0.

628 J. P. Gamboa

https://doi.org/10.1017/psa.2023.168 Published online by Cambridge University Press

https://doi.org/10.1016/j.shpsa.2017.11.007
https://www.sciencedirect.com/science/article/pii/S0039368117302741
https://www.sciencedirect.com/science/article/pii/S0039368117302741
https://doi.org/10.1007/s11023-012-9291-1
https://doi.org/10.1016/j.tplants.2007.03.002
https://doi.org/10.1007/s10539-021-09807-0
https://doi.org/10.1017/psa.2023.168


Bassett, Danielle S., Perry Zurn, and Joshua I. Gold. 2018. “On the Nature and Use of Models in Network
Neuroscience.” Nature Reviews Neuroscience 19 (9):566–78. https://doi.org/10.1038/s41583-018-0038-8.

Bickle, John. 2008. “Real Reduction in Real Neuroscience: Metascience, Not Philosophy of Science (and
certainly not metaphysics!).” In Being Reduced: New Essays on Reduction, Explanation, and Causation, edited
by Jakob Hohwy and Jesper Kallestrup, 34–51. Oxford: Oxford University Press.

Bitzer, Sebastian, Hame Park, Felix Blankenburg, and Stefan Kiebel. 2014. “Perceptual Decision Making:
Drift-Diffusion Model Is Equivalent to a Bayesian Model.” Frontiers in Human Neuroscience 8: 1–17.
https://doi.org/10.3389/fnhum.2014.00102.

Bokulich, Alisa. 2011. “How Scientific Models Can Explain.” Synthese 180 (1):33–45. https://doi.org/
10.1007/s11229-009-9565-1.

Brunswik, Egon. 1952. The Conceptual Framework of Psychology. Chicago: The University of Chicago Press.
Buckner, Cameron. 2013. “Morgan’s Canon, Meet Hume’s Dictum: Avoiding Anthropofabulation in Cross-

species Comparisons.” Biology & Philosophy 28 (5):853–71. https://doi.org/10.1007/s10539-013-9376-0.
Busemeyer, Jerome R., and Julie C. Stout. 2002. “A Contribution of Cognitive Decision Models to Clinical

Assessment: Decomposing Performance on the Bechara Gambling Task.” Psychological Assessment
14 (3):253–62. https://doi.org/10.1037/1040-3590.14.3.253.

Busemeyer, Jerome R., and Yi-Min Wang. 2000. “Model Comparisons and Model Selections Based on
Generalization Criterion Methodology.” Journal of Mathematical Psychology 44 (1):171–89. https://doi.org/
10.1006/jmps.1999.1282 and https://www.sciencedirect.com/science/article/pii/S0022249699912828.

Callender, Craig, and Jonathan Cohen. 2010. “There Is No Special Problem about Scientific Representation.”
Theoria: An International Journal for Theory, History and Fundations of Science 21 (1):67–85.

Carruthers, Peter, and David M. Williams. 2022. “Model-free Metacognition.” Cognition 225: 105117.
https://doi.org/10.1016/j.cognition.2022.105117 and https://www.sciencedirect.com/science/article/
pii/S0010027722001056.

Cartwright, Nancy. 1983. How the Laws of Physics Lie. Oxford: Oxford University Press.
Chirimuuta, Mazviita. 2014. “Minimal Models and Canonical Neural Computations: The Distinctness of

Computational Explanation in Neuroscience.” Synthese 191 (2):127–53. https://doi.org/10.1007/
s11229-013-0369-y.

Chirimuuta, Mazviita. 2018. “Explanation in Computational Neuroscience: Causal and Non-causal.” British
Journal for the Philosophy of Science 69 (3):849–80.

Colombo, Michael, and Damian Scarf. 2020. “Are There Differences in “Intelligence” between Nonhuman
Species? The Role of Contextual Variables.” Frontiers in Psychology 11, 2072. https://doi.org/10.3389/
fpsyg.2020.02072 and https://www.frontiersin.org/articles/10.3389/fpsyg.2020.02072.

Craver, Carl F., and David Michael Kaplan. 2020. “Are More Details Better? On the Norms of Completeness
for Mechanistic Explanations.” British Journal for the Philosophy of Science 71 (1):287–319.

DasGupta, Shamik, Clara Howcroft Ferreira, and Gero Miesenböck. 2014. “FoxP Influences the Speed and
Accuracy of a Perceptual Decision in Drosophila.” Science 344 (6186): 901–4. https://doi.org/10.1126/
science.1252114 and https://www.science.org/doi/abs/10.1126/science.1252114.

Dawes, Robyn M. 2018. “The Mind, the Model, and the Task.” In Cognitive theory, edited by Frank Restle,
Richard M. Shiffrin, N. John Castellan, Harold R. Lindman, and David B. Pisoni, 119–29. New York:
Psychology Press.

Dawes, Robyn M., and Bernard Corrigan. 1974. “Linear Models in Decision Making.” Psychological Bulletin
81 (2):95–106.

Drayson, Zoe. 2020. “Why I Am Not a Literalist.” Mind and Language 35 (5):661–70.
Egan, Frances. 2017. “Function-Theoretic Explanation and the Search for Neural Mechanisms.”

In Explanation and Integration in Mind and Brain Science, edited by David M. Kaplan, 145–63. New York:
Oxford University Press.

Einhorn, Hillel J., Don N. Kleinmuntz, and Benjamin Kleinmuntz. 1979. “Linear Regression and Process-
Tracing Models of Judgment.” Psychological Review 86 (5):465–85. https://doi.org/10.1037/0033-295X.
86.5.465 and https://psycnet.apa.org/doi/10.1037/0033-295X.86.5.465.

Evans, Nathan J. 2019. “Assessing the Practical Differences between Model Selection Methods
in Inferences about Choice Response Time Tasks.” Psychonomic Bulletin & Review 26 (4): 1070–98.
https://doi.org/10.3758/s13423-018-01563-9.

Fard, Pouyan R., Hame Park, Andrej Warkentin, Stefan Kiebel, and Sebastian Bitzer. 2017. “A Bayesian
Reformulation of the Extended Drift-Diffusion Model in Perceptual Decision Making.” Frontiers in

Philosophy of Science 629

https://doi.org/10.1017/psa.2023.168 Published online by Cambridge University Press

https://doi.org/10.1038/s41583-018-0038-8
https://doi.org/10.3389/fnhum.2014.00102
https://doi.org/10.1007/s11229-009-9565-1
https://doi.org/10.1007/s11229-009-9565-1
https://doi.org/10.1007/s10539-013-9376-0
https://doi.org/10.1037/1040-3590.14.3.253
https://doi.org/10.1006/jmps.1999.1282
https://doi.org/10.1006/jmps.1999.1282
https://www.sciencedirect.com/science/article/pii/S0022249699912828
https://doi.org/10.1016/j.cognition.2022.105117
https://www.sciencedirect.com/science/article/pii/S0010027722001056
https://www.sciencedirect.com/science/article/pii/S0010027722001056
https://doi.org/10.1007/s11229-013-0369-y
https://doi.org/10.1007/s11229-013-0369-y
https://doi.org/10.3389/fpsyg.2020.02072
https://doi.org/10.3389/fpsyg.2020.02072
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.02072
https://doi.org/10.1126/science.1252114
https://doi.org/10.1126/science.1252114
https://www.science.org/doi/abs/10.1126/science.1252114
https://doi.org/10.1037/0033-295X.86.5.465
https://doi.org/10.1037/0033-295X.86.5.465
https://psycnet.apa.org/doi/10.1037/0033-295X.86.5.465
https://doi.org/10.3758/s13423-018-01563-9
https://doi.org/10.1017/psa.2023.168


Computational Neuroscience 11, 29. https://doi.org/10.3389/fncom.2017.00029 and https://www.
frontiersin.org/articles/10.3389/fncom.2017.00029.

Farrar, Benjamin, and Ljerka Ostojic. 2019. “The Illusion of Science in Comparative Cognition.” PsyArXiv.
https://doi.org/10.31234/osf.io/hduyx.

Figdor, Carrie. 2018. Pieces of Mind: The Proper Domain of Psychological Predicates. Oxford: Oxford University
Press.

Figdor, Carrie. 2020. “Why Literalism Is Still the Best Game in Town: Replies to Drayson, Machery, and
Schwitzgebel.” Mind and Language 35 (5):687–93.

Frigg, Roman, and Stephan Hartmann. 2020. “Models in Science.” In The Stanford Encyclopedia of
Philosophy (Spring 2020 edition), edited by Edward N. Zalta. https://plato.stanford.edu/archives/
spr2020/entries/models-science/.

Gagliano, Monica, Michael Renton, Martial Depczynski, and Stefano Mancuso. 2014. “Experience Teaches
Plants to Learn Faster and Forget Slower in Environments Where It Matters.” Oecologia 175 (1):63–72.
https://doi.org/10.1007/s00442-013-2873-7.

Giere, Ronald N. 2010. “An Agent-Based Conception of Models and Scientific Representation.” Synthese
172 (2):269–81.

Gigerenzer, Gerd, and Daniel G. Goldstein. 1999. “Betting on One Good Reason: The Take the Best
Heuristic.” In Simple Heuristics That Make Us Smart, 75–95. New York: Oxford University Press.

Gigerenzer, Gerd, Ulrich Hoffrage, and Daniel G. Goldstein. 2008. “Fast and Frugal Heuristics Are Plausible
Models of Cognition: Reply to Dougherty, Franco-Watkins, and Thomas (2008).” Psychological Review
115 (1):230–39. https://doi.org/10.1037/0033-295X.115.1.230.

Glöckner, Andreas, and Tilmann Betsch. 2011. “The Empirical Content of Theories in Judgment and
Decision Making: Shortcomings and Remedies.” Judgment and Decision Making 6 (8):711–21.

Goldberg, Lewis R. 1971. “Five Models of Clinical Judgment: An Empirical Comparison between
Linear and Nonlinear Representations of the Human Inference Process.” Organizational Behavior and
Human Performance 6 (4):458–79. https://doi.org/10.1016/0030-5073(71)90028-6 and https://www.
sciencedirect.com/science/article/pii/0030507371900286.

Hartmann, Stephan. 1999. “Models and Stories in Hadron Physics.” In Models as Mediators: Perspectives on
Natural and Social Science, edited by Margaret Morrison and Mary Morgan. New York: Cambridge
University Press.

Hoffman, Paul J. 1960. “The Paramorphic Representation of Clinical Judgment.” Psychological Bulletin
57 (2):116–31. https://doi.org/10.1037/h0047807.

Hogarth, Robin M., and Natalia Karelaia. 2007. “Heuristic and Linear Models of Judgment: Matching Rules
and Environments.” Psychological Review 114 (3):733–58. https://doi.org/10.1037/0033-295X.114.3.733.

Jarecki, Jana B., Jolene H. Tan, and Mirjam A. Jenny. 2020. “A Framework for Building Cognitive Process
Models.” Psychonomic Bulletin & Review 27 (6):1218–29. https://doi.org/10.3758/s13423-020-01747-2.

Johnson, Eric J., Michael Schulte-Mecklenbeck, and Martijn C. Willemsen. 2008. “Process Models Deserve
Process Data: Comment on Brandstätter, Gigerenzer, and Hertwig (2006).” Psychological Review 115 (1):
263–72. https://doi.org/10.1037/0033-295X.115.1.263.

Joo, Hannah R., Hexin Liang, Jason E. Chung, Charlotte Geaghan-Breiner, Jiang Lan Fan, Benjamin P.
Nachman, Adam Kepecs, and Loren M. Frank. 2021. “Rats Use Memory Confidence to Guide
Decisions.” Current Biology 31 (20):4571–83.e4. https://doi.org/10.1016/j.cub.2021.08.013 and https://
www.sciencedirect.com/science/article/pii/S0960982221011179.

Kaplan, David Michael. 2011. “Explanation and Description in Computational Neuroscience.” Synthese
183 (3):339. https://doi.org/10.1007/s11229-011-9970-0.

Kaplan, David Michael, and William Bechtel. 2011. “Dynamical Models: An Alternative or Complement to
Mechanistic Explanations?” Topics in Cognitive Science 3 (2):438–44. https://doi.org/10.1111/j.1756-
8765.2011.01147.x and https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1756-8765.2011.01147.x.

Kaplan, David Michael, and Carl F. Craver. 2011. “The Explanatory Force of Dynamical and Mathematical
Models in Neuroscience: A Mechanistic Perspective.” Philosophy of Science 78 (4):601–27. https://doi.
org/10.1086/661755.

Karelaia, Natalia, and Robin M. Hogarth. 2008. “Determinants of Linear Judgment: A Meta-analysis of Lens
Model Studies.” Psychology Bulletin 134 (3):404–26. https://doi.org/10.1037/0033-2909.134.3.404.

630 J. P. Gamboa

https://doi.org/10.1017/psa.2023.168 Published online by Cambridge University Press

https://doi.org/10.3389/fncom.2017.00029
https://www.frontiersin.org/articles/10.3389/fncom.2017.00029
https://www.frontiersin.org/articles/10.3389/fncom.2017.00029
https://doi.org/10.31234/osf.io/hduyx
https://plato.stanford.edu/archives/spr2020/entries/models-science/
https://plato.stanford.edu/archives/spr2020/entries/models-science/
https://doi.org/10.1007/s00442-013-2873-7
https://doi.org/10.1037/0033-295X.115.1.230
https://doi.org/10.1016/0030-5073(71)90028-6
https://www.sciencedirect.com/science/article/pii/0030507371900286
https://www.sciencedirect.com/science/article/pii/0030507371900286
https://doi.org/10.1037/h0047807
https://doi.org/10.1037/0033-295X.114.3.733
https://doi.org/10.3758/s13423-020-01747-2
https://doi.org/10.1037/0033-295X.115.1.263
https://doi.org/10.1016/j.cub.2021.08.013
https://www.sciencedirect.com/science/article/pii/S0960982221011179
https://www.sciencedirect.com/science/article/pii/S0960982221011179
https://doi.org/10.1007/s11229-011-9970-0
https://doi.org/10.1111/j.1756-8765.2011.01147.x
https://doi.org/10.1111/j.1756-8765.2011.01147.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1756-8765.2011.01147.x
https://doi.org/10.1086/661755
https://doi.org/10.1086/661755
https://doi.org/10.1037/0033-2909.134.3.404
https://doi.org/10.1017/psa.2023.168


Kellen, David. 2019. “A Model Hierarchy for Psychological Science.” Computational Brain & Behavior
2 (3):160–65. https://doi.org/10.1007/s42113-019-00037-y.
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