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Abstract
We obtain sharp bounds for the second Hankel determinant of logarithmic inverse coefficients for starlike
and convex functions.
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1. Introduction

Let H denote the class of analytic functions in the unit disk D :={z € C: |z] < 1}.
Here H is a locally convex topological vector space endowed with the topology of
uniform convergence over compact subsets of D. Let A denote the class of functions
f € H such that f(0) = 0 and f’(0) = 1. Let S denote the subclass of A consisting of
functions which are univalent (that is, one-to-one) in D. If f € A, then it has the series
representation

f@=2+) a7, zeD. (1.1)
n=2

For g,n € N, the Hankel determinant H,,(f) of the Taylor coefficients of the
function f € A of the form (1.1) is

ap ap+1 c Aptg-1
An+1 Apy2 " An+q
Hq,n(f) =
Aptg-1 Apn+g " An+2(g-1)
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Hankel determinants of various orders have been studied in many contexts (see for
instance [5]). The Fekete—Szeg6 functional is the second Hankel determinant H; ;(f).
Fekete—Szego obtained estimates for |a; — ,ua%l with y real (see [10, Theorem 3.8]).

Let g be the inverse function of f € S defined in a neighbourhood of the origin with
the Taylor series expansion

gw) = F W) = w+ Y A, (12)

n=2
where we may choose |w| < 1/4 from Koebe’s 1/4-theorem. Using variational
methods, Lowner [16] obtained the sharp estimate
|A,| < K, foreachneN,

where K, = 2n)! /(n! (n+ 1)!) and K(w) =w + Kow? + Ksw® +--- is the inverse
of the Koebe function. Let f(z) =z+ X, a,2" be a function in class S. Since
F(FH(w) = w, it follows from (1.2) that

A = —ay,
_ 2
Az = —az + 2612,
Ay = —ag + 5612613 - Sag

The logarithmic coefficients vy, of f € S are defined by

Ff(z) := log @ = 22 v.2', z€D. (1.3)
n=1

Few exact upper bounds for y, have been established. The significance of this problem
in the context of the Bieberbach conjecture was pointed out by Milin [17]. Milin’s
conjecture that for f € Sand n > 2,

n m

1
> (ki - 7) <0,
£ k

=1 k=1

led De Branges, by proving this conjecture, to the proof of the Bieberbach conjecture
[9]. For the Koebe function k(z) = z/(1 — z)?, the logarithmic coefficients are y, = 1/n.
Since the Koebe function & plays the role of extremal function for most of the extremal
problems in the class S, it might be expected that |y,| < 1/n holds for functions in S.
However, this is not true in general, even in order of magnitude. Indeed, there exists
a bounded function f in the class S with logarithmic coefficients y, # O(n™83) (see
[10, Theorem 8.4]). By differentiating (1.3) and equating coefficients,

_ 1
’}/l - EaQ’

¥ = Has - Lad), (14)

1 1.3
Y3 = 3(as — axas + 3a5).
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[3] Second Hankel determinant of logarithmic inverse coefficients 3

If fe8,itis easy to see that |y;| < 1, because |ay| < 2. Using the Fekete—Szego
inequality [10, Theorem 3.8] for functions in S in (1.3), we obtain the sharp estimate

lyal < 2(1+2¢7%) = 0.635.....

For n > 3, the problem seems much harder and no significant bound for |y,| when
f € S appears to be known. In 2017, Ali and Allu [1] obtained initial logarithmic
coefficient bounds for close-to-convex functions. For recent results on several
subclasses of close-to-convex functions, see [2, 6, 21].

The notion of logarithmic inverse coefficients, that is, logarithmic coefficients of
the inverse of f, was proposed by Ponnusamy et al. [20]. The logarithmic inverse
coefficients 'y, n € N, of f are defined by the equation

—1 (o]

Fpa(w) = log L) _ 23 T, wl < 1/4.

w
n=1

In [20], Ponnusamy et al. found sharp upper bounds for the logarithmic inverse

coefficients for the class S, namely
1 (2n
Il < E(”Z)’ neN,

with equality only for the Koebe function or one of its rotations. Ponnusamy et al. [20]
also obtained sharp bounds for the initial logarithmic inverse coefficients for some of
the important geometric subclasses of S.

Recently, Kowalczyk and Lecko [12] proposed the study of the Hankel determinant
whose entries are logarithmic coefficients of f € S, given by

Yn Yo+t Yn+q-1
Vn+l1 Yn+2 7n+q
Hq,n(Ff/z) = . . . .
yn+q—1 7n+q e yn+2(q—1)

Kowalczyk and Lecko [12] obtained a sharp bound for the second Hankel determinant
H, 1 (Fr/2) for starlike and convex functions. Sharp bounds for H, ;(F/2) for various
subclasses of S are considered in [3, 4, 11, 13, 18]).

In this paper, we consider the second Hankel determinant for logarithmic inverse
coefficients. From (1.4), for f € S given by (1.1), the second Hankel determinant of
F-1/2 is given by

Hy (Fp1/2) =T'1T5 - T5 = 1(A2As — A} + 1A3)
= &(13d5 — 124343 — 1243 + 12aza4). (1.5)

We note that |Hy,i(Fy-1/2)| is invariant under rotation, since for fy(z) := e™ f(e"z),
feRand feS,
A0 '
Hy (Fp1/2) = K(Ba‘z‘ —12a3a3 - 1243 + 12aya4) = " H, 1 (F -1 /2).
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The main aim of this paper is to find a sharp upper bound for |H> 1 (F/-1/2)] when
f belongs to the class of convex or starlike functions. A domain Q C C is said to be
starlike with respect to a point zo € Q if the line segment joining 7y to any point in
lies entirely in Q. If 7 is the origin, then we say that Q is a starlike domain. A function
f € Ais said to be starlike if f(D) is a starlike domain. We denote by S* the class of
starlike functions f in S. It is well known that a function f € A is in S* if and only if

Re (Zf )
@)
Further, a domain Q C C is called convex if the line segment joining any two points of

Q lies entirely in Q. A function f € A is called convex if f(D) is a convex domain. We
denote by C the class of convex functions in S. A function f € A is in C if and only if

zf"(2)
(@)

)>o forz € D. (16)

Re(1+ )>0 forz € D. (1.7)

2. Preliminary results

In this section, we present the key lemmas which will be used to prove the main
results of this paper. Let # denote the class of all analytic functions p having positive
real part in D, with the form

P =l+ciz+emd +e8 +--- . (2.1)

A member of P is called a Carathéodory function. It is known that |c,| < 2,n > 1, for
p € P. By using (1.6) and (1.7), functions in the classes S* and C can be represented
in terms of functions in the Carathéodory class P.

Parametric representations of the coefficients are often useful. In Lemma 2.1, (2.2)
is due to Carathéodory [10]. Equation (2.3) can be found in [19]. In 1982, Libera and
Zlotkiewicz [14, 15] derived (2.4) with the assumption that ¢; > 0. Later, Cho et al. [7]
derived (2.4) in the general case and gave the explicit form of the extremal function.

LEMMA 2.1. If p € P is of the form (2.1), then

c1 = 2pi, (2.2)
¢ =2p; +2(1 = p)p2 (2.3)
and
=2p +4(1 - p? -2(1 -p? 24+ 2(1 = pH)( = |ps)? 2.4
c3 =2p; +4(1 = p))pip2 = 2(1 = py)pip; +2(1 = p)(1 = Ip2)p3 (2.4)

for some py, pr,p3 €D :={zeC: |7 < 1)
For p) € T:={ze€ C: |zl = 1}, there is a unique function p € P with c as in (2.2),
namely

1+ piz

s e D.
l—piz

p(z) =
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For py € D and p, €T, there is a unique function p € P with c| and c; as in (2.2)
and (2.3), namely

_ L+ +Pip)z+ po??
1 —(p1 = P1p2)z— p22?

For p1, p2 € D and p3 € T, there is unique function p € P with c1,c, and c3 as in
(2.2)—(2.4), namely

P() (2.5)

_ L+ ap3 + pipa + pz+ (pips + pipaps + P2+ p3?
1+ (Paps + pip2 — Pz + (P1p3 — piP2ps — p2) — p3z’’

Next we recall the following well-known result due to Choi et al. [8].

p(2) zeD.

LEMMA 2.2. Let A, B, C be real numbers and
Y(A,B,C) := max(|A + Bz + CZ| + 1 - [z]).
zeD
(1) IfAC =0, then
|Al + |B| + |C], |B| = 2(1 - |C)),

Y(A,B,C) = B?

1+|Al+ —————, |B] <2(1 —|C)).
X1 =1C) (

(i) IfAC <0, then
2

1- A+ ———,
4(1 —ZICI)

—4AC(C2 - 1) < B> A IB| < 2(1 - |C)),

Y(A,B,C) =

1+ Al + B2 < min{4(1 + |C])%, —4AC(C™2 - 1)},

41 +|Cy’
R(A9 Ba C)a OtherWise,
where

Al + 1Bl +1C, ICI(1B] + 4|A]) < |AB|,
—IAl + B + |C], |AB| < |CI(IB| — 4|A]),

BZ
A 1-—— h se.
(Al + 1CDy/ A otherwise

3. Main results

RA,B,C) =

Now we will prove the first main result of this paper. We obtain the following sharp
bound for Hy 1 (F ;-1 /2) for functions in the class C.

THEOREM 3.1. For f € C given by (1.1),
\Ha 1 (F 1 /2)] < 55 (3.1)

The inequality is sharp.
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PROOF. Let f € C be of the form (1.1). Then by (1.7),

zf" (@)
@
for some p € P of the form (2.1). Since the class C is invariant under rotation and the
function is also rotationally invariant, we can assume that c¢; € [0, 2]. Comparing the
coefficients on both sides of (3.2) yields

1+

p(2) (3.2)

a = e,
a3 = t(c2 + ¢},
as = 21—4(2C3 + 3c1c0 + c?).
Hence, by (1.5),
Hy (Ff1/2) = 552 (11cf = 20ctes — 16¢5 + 24cc3).
By (2.2)—(2.4), after simplification,

4
1 1
Ha1(Fp1/2) = 20 = 52(1= pDpipa = = (1= pDR + pDp)
1
+ 571 =P = 1p{Dp1ps. (3.3)

We consider three cases according to the value of p.
Case 1: p; = 1. By (3.3),
\Hp 1 (Fp-1/2)] = 4.
Case 2: p; = 0. By (3.3),
H21(F -1 /2)] = 55131 < 56

Case 3: p; € (0, 1). Since |ps| < 1, applying the triangle inequality in (3.3) gives
3 2

1 2 2+p1
Hy (Fp1/2)| = — 1—2(—— - 241 - 2)
|Ho, 1 (Fp-1/2)] 24171( Pi 2= P1p2 T 2 P3|
1
< 5yp(- PD(A + Bpy + Cp3| + 1 = |p3)), (3.4)
where
3 2+ 2
Am P gy, =P
2(1-p)) 3p1

Since AC < 0, we can apply Lemma 2.2(ii). The argument now divides into five parts.
3(a). For p; € (0, 1),

P04+ p}

———— <

—4Ac(i - 1) B =
312 +p%)

C?
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. . . . 2 . .

The inequality |B| < 2(1 — |C]) is equivalent to pi(4 — 6p; + 5p7) < 0 which is not true

for p; € (0, 1).

3(b). It is easy to check that

. 1 1
min {4(1 +1C1)%, ~4AC( 55 — 1)} = ~44c( 55 - 1),
and from 3(a),
—4AC(i - 1) < B~
2
Therefore, the inequality B? < min{4(1 + |C|)?, —~4AC(1/C? — 1)} does not hold for
O<p <1

3(c). The inequality |C|(|B| + 4|A|) — |AB| < 0 is equivalent to 4 + 6p? — p} < 0, which is
false for p; € (0, 1).
3(d). The inequality

4

9pt +10p* - 4
IAB| - |CI(1B| - 4/A]) = ——r-—

is equivalent to 9p‘1t + IOP% —4 <0, which is true for

0 < p1 < p} = 14/ V6l - 5~ 0.5588.

It follows from Lemma 2.2 and (3.4) that
o, (F -1 /2) < 33 p1(1 = p(—JA] + |B + |C]) = g7(4 + 4p; — 11p}) = h(p),

where h(x) = 4 + 4x* — 11x*. By a simple calculation, the maximum of the function
h(x) for 0 < x < p} occurs at the point xo = V2/11. We conclude that

Haa(F /1 < Wy E) = &

3(e). For p| < p1 < 1, we use the last case of Lemma 2.2 together with (3.4) to obtain

1 [ B
Hy (Fp1/2)| < —pi(1 = p? AD+[1 - —
|Hy,1 (Fy /)I_24p1( pPUCI + |AD 1AC

[ 2 7-pi
=—(p7 -2 4 =k(p1),
144(pl pi+4) i+ 2p? (p1)
where
= (* =22 +4 .
K = @ =2+ D\ 7o
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We want to find the maximum of k(x) over the interval p| < x < 1. Observe that

, x [ 7—x% (92— 54x — 15x* + 425
K(x) = —— ( ) ~0
WV 22T o0
if and only if 92 — 54x% — 15x* + 4x% = 0. However, all the real roots of this equation

lie outside the interval pj < x < 1 and k’(x) < 0 for p} <x < 1. So k is decreasing and
hence k(x) < k(p}) for p| < x < 1. We conclude that, for p] <x < 1,

a1 (Fy-1/2)| < k(p}) = 0.0290035.

The desired inequality (3.1) follows from Cases 1-3. By tracking back in the proof,
we see that equality in (3.1) holds when

pr=A%, p3i=1,

and

|A + Bpy + Cp3+ 1 — |p3| = —|Al + |B| + |C], (3.5)

_ 1 2 _ 2 _ 2
a-pfE B--JF c-aE

Indeed, we can easily verify that one of the solutions of (3.5) is p, = 1. In view of
Lemma 2.2, we conclude that equality holds for the function f € A given by (1.7),
corresponding to the function p € P of the form (2.5) with p; = v2/11,p, = 1 and

where

p3 = 1, that s,
1 +2v2/T0z + 22
p@) = - .
—Z
This complete the proof. |

Next, we obtain the sharp bound for Hy;(F -1 /2) for functions in the class S*.

THEOREM 3.2. For f € S8* given by (1.1),

|Hy 1 (Fp-1/2) < £. (3.6)
The inequality is sharp.
PROOF. Let f € 8" be of the form (1.1). By (1.6),

'@ _
f@

for some p € P of the form (2.1). By comparing the coefficients on both sides of (3.7),

p(2) (3.7)

a = Cy,
1 2
az = 5(c2 + ),

as = é(ZCg +3cico + c?).
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Hence, by (1.5),
Hy (Fp1/2) = ﬁ(&ﬁ - 60%02 - 36'% +4cic3).
From (2.2)—(2.4), by straightforward computation,
Hy1(F1/2) = §p} = 51 = phpa = 15(1 = pDG + pHp;
+1(1 = pD(A = Ipihp1ps. (3.8)

Now we consider three cases according to the value of p;.

Case 1: p; = 1. By (3.8),
\Hy (Fp1/2)) = B
Case 2: p; = 0. By (3.8),

\Ha,1 (Fp-1/2) = $lp3l < &

Case 3: p; € (0,1). Applying the triangle inequality in (3.8) and using the fact that
Ipsl < 1,

13p? 5 3+ p2

1.2
1 . HPip2— p
W—ph 2 2= P

1
[Hoa (/21 = 301 - p%)(

—1 1- pz A+Bp +sz +1- pz
21]91( 1)(| 2 2| | 2|)s
where

13 5 3+ p?
pl B:=——p, C:= ——pl.
4(1 - 2 4p,
Since AC < 0, we can apply Lemma 2.2(ii).
3(a). For py € (0, 1),
1 3p2(16 + p?
—4AC(— - 1) - B?= M
C? G+p)
The inequality |B| < 2(1 —|C]) is equivalent to 3 — 4p; + Zp% < 0 which is not true for
p1 € (0, 1).

3(b). It is easy to see that

. 1 1
min {4(1 +|CD?, _4AC(E - 1)} = _4AC(E _ 1)’
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and from 3(a),
1 2
—4AC(E - 1) <B.
Therefore, the inequality B> < min{4(1 + |C|)?>, =4AC(1/C? — 1)} does not hold for
0< P1 < 1.

3(c). The inequality |C|(|B| + 4|A]) — |AB| < 0 is equivalent to the inequality 44p‘l1 -
68p? — 16 — p} > 0, which is false for p; € (0, 1).

3(d). The inequality
96p‘1t + 8817% - 15 -
1-pl12 -

|AB| - |CI(IB| - 4lA]) =

is equivalent to 96p} + 88p? — 15 < 0, which is true for

1 (V211 =11
O<pi<pf= N © 0.38328.

From (3.7) and Lemma 2.2,
\Hy1(F -1 /2] < $p1(1 = pD(—IA] + Bl + C]) = 153 + 8p] — 24p}) = h(p1), (3.9)

where A(x) = 3 + 8x* — 24x*. Since /’(x) > 0in 0 < x < p}/, we have h(x) < h(p) for
0 < x < pY. Therefore,

|Ha (Fp1/2)] < 4%8(—58 + 5V211) = 0.304775.

3(e). Furthermore, for p|" < p; < 1, from (3.8) and Lemma 2.2,

1 > [ B
21 (Fp1 /21 < 52 p1(1 = p)(CT+ ANy 1 = =
1 16 — 3p?
= —(12p} -2 2+3,/—1 = k(p1),

k(x) = Ewlm(lzx —2x" +3).

As k’'(x) = 0 has no solution in (pY’, 1) and k’(x) > 0, the maximum occurs at x = 1 and
we conclude that

where

\Hp ((Fp1 /2] < k(1) =8 forp) <x< L

The desired inequality (3.6) follows from Cases 1-3. For the equality, consider the
Koebe function

.z
k(z) = —(] o
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Second Hankel determinant of logarithmic inverse coefficients 11

Clearly, k € S* and it is easy to show that

\Hy 1 (Fi1 /2)] = 1.

This completes the proof. ]
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