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Abstract

This article examines large-time behaviour of finite-state mean-field interacting particle
systems. Our first main result is a sharp estimate (in the exponential scale) of the time
required for convergence of the empirical measure process of the N-particle system to
its invariant measure; we show that when time is of the order exp{N�} for a suitable
constant � > 0, the process has mixed well and it is close to its invariant measure. We
then obtain large-N asymptotics of the second-largest eigenvalue of the generator associ-
ated with the empirical measure process when it is reversible with respect to its invariant
measure. We show that its absolute value scales as exp{−N�}. The main tools used in
establishing our results are the large deviation properties of the empirical measure pro-
cess from its large-N limit. As an application of the study of large-time behaviour, we
also show convergence of the empirical measure of the system of particles to a global
minimum of a certain ‘entropy’ function when particles are added over time in a con-
trolled fashion. The controlled addition of particles is analogous to the cooling schedule
associated with the search for a global minimum of a function using the simulated
annealing algorithm.

Keywords: Mean-field interaction; McKean–Vlasov equation; metastability; exit from a
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1. Introduction

In this paper, we study large-time behaviour and the second eigenvalue problem for
Markovian mean-field interacting particle systems with jumps. Our motivation is to provide
an understanding of metastable phenomena in engineered systems such as load balancing
networks [1, 2, 37, 36, 24] and wireless local area networks [7, 6, 11, 28, 41, 8], and in nat-
ural systems involving grammar acquisition, sexual evolution [40, 39], and epidemic spread
[29, 3], to name a few. These systems are briefly described in Section 1.4.

Before we discuss our main contributions, let us describe the setting of our mean-field
interacting particle system.
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1.1. The setting

Let there be N particles. Each particle has a state associated with it which comes from
a finite set Z; the state of the nth particle at time t is denoted by XN

n (t) ∈Z . The empirical
measure of the system of particles at time t is defined by

μN(t) := 1

N

N∑
n=1

δXN
n (t) ∈ M1(Z),

where δ· denotes the Dirac measure on Z . Here, M1(Z) denotes the space of probability mea-
sures on Z equipped with the total variation metric (which generates the topology of weak
convergence on M1(Z)). Each particle has a set of allowed transitions; to define this, let (Z, E)
be a directed graph with the interpretation that whenever (z, z′) ∈ E , a particle in state z is
allowed to move from z to z′. To specify the interaction among the particles and the evo-
lution of the states of the particles over time, for each (z, z′) ∈ E , we are given a function
λz,z′ : M1(Z) → [0, ∞). We consider the generator �N acting on functions f on ZN by

�Nf
(
zN)= N∑

n=1

∑
z′n :
(

zn,z′n
)
∈E

λzn,z′n
(
zN
)(

f
(

zN
n,zn,z′n

)
− f
(
zN));

here

zN = 1

N

N∑
n=1

δzn ∈ M1(Z)

denotes the empirical measure associated with the configuration zN ∈ZN , and

zN
n,zn,z′n

denotes the resultant configuration of the particles when the nth particle changes its state from
zn to z′

n.
We make the following assumptions on the model:

(A1) The graph (Z, E) is irreducible.

(A2) The functions λz,z′ (·), (z, z′) ∈ E , are Lipschitz continuous on M1(Z), and there exist
positive constants c, C such that c ≤ λz,z′ (ξ ) ≤ C for all (z, z′) ∈ E and all ξ ∈ M1(Z).

Let D
(
[0, ∞),ZN

)
denote the space of ZN-valued functions on [0, ∞) that are right-

continuous with left limits (càdlàg), equipped with the Skorokhod J1 topology (see
[19, Chapter 3]). Since the transition rates are bounded (by Assumption (A2)), the
D
(
[0, ∞),ZN

)
-valued martingale problem for �N is well posed (see [19, Exercise 15,

Section 4.1]); therefore, given an initial configuration of the particles
(
XN

n (0), 1 ≤ n ≤ N
) ∈

ZN , we have a Markov process
((

XN
n (t), 1 ≤ n ≤ N

)
, t ≥ 0

)
whose sample paths are elements

of D
(
[0, ∞),ZN

)
. To describe the process in words, a particle in state z at time t moves to

state z′ at rate λz,z′ (μN(t)) independent of everything else; i.e., the evolution of the state of a
particle depends on the states of the other particles via the empirical measure of the states of all
the particles, hence the name mean-field interaction. Note that the empirical measure process
(μN(t), t ≥ 0) is also a Markov process with state space MN

1 (Z), which is the set of elements of

https://doi.org/10.1017/apr.2022.11 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.11


Large-time behaviour of mean-field models 87

M1(Z) that can arise as empirical measures of N-particle configurations on ZN . Its generator
LN acting on functions f on MN

1 (Z) is given by

LNf (ξ ) =
∑

(z,z′)∈E
Nξ (z)λz,z′(ξ )

[
f

(
ξ + δz′

N
− δz

N

)
− f (ξ )

]
.

Since μN is a Markov process on a finite state space, and since the graph (Z, E) of allowed
particle transitions is irreducible (Assumption (A1)), there exists a unique invariant probability
measure for μN , which we denote by ℘N . Also, let Pν denote the law of (μN(t), t ≥ 0) with
initial condition μN(0) = ν ∈ MN

1 (Z) (i.e., the solution to the D([0, ∞), M1(Z))-valued mar-
tingale problem for LN with initial condition ν ∈ MN

1 (Z)), and let Eν denote integration with
respect to Pν ; in both Pν and Eν we suppress the dependence on N for greater readability.

1.2. Main results

Let us now discuss the main results of the paper. All our results are established under
Assumptions (A1) and (A2) on the particle system, and a further assumption (B1) on the
structure of the large-time behaviour of the ordinary differential equation (ODE) (1.1) (see
Section 3).

1.2.1. Convergence to the invariant measure. Our first main result is on the time required
for the process μN to equilibrate. This time grows at an exponential rate with the number
of particles N, where the rate is the constant � > 0 which will be defined in (3.6).

Theorem 1.1. Given δ > 0 there exist ε > 0 and N0 ≥ 1 such that, with T = exp{N(� + δ)},
sup

ν∈MN
1 (Z)

|Eν( f (μN(T))) − 〈 f , ℘N〉| ≤ ‖ f ‖∞ exp{− exp(Nε)}

for all N ≥ N0 and all bounded Borel-measurable functions f on M1(Z).

The result says that when time is of the order exp{N(� + δ)} for any δ > 0, the process has
mixed well and it is close to its invariant measure. The proof of this result is based on the study
of the large-time behaviour of the process μN . Before we describe this, let us mention a well-
known law of large numbers for the process μN [33, 22, 44, 6]. This will not only pave the way
for a suitable description of the constant � but also lead us to a converse of Theorem 1.1 and
the significance of �.

Assume (A1) and (A2), and suppose that the initial conditions {μN(0)}N≥1 converge weakly
to a deterministic measure ν ∈ M1(Z). Then for any fixed T > 0, the empirical measure process
(μN(t), 0 ≤ t ≤ T) converges in D([0, T], M1(Z)), in probability, to the solution to the ODE

μ̇(t) = �∗
μ(t)μ(t), 0 ≤ t ≤ T, μ(0) = ν; (1.1)

here, for any ξ ∈ M1(Z), �ξ denotes the |Z| × |Z| rate matrix when the empirical measure
is ξ (i.e., �ξ (z, z′) = λz,z′ (ξ ) when (z, z′) ∈ E , �ξ (z, z′) = 0 when (z, z′) /∈ E , and �ξ (z, z) =
−∑z′ �=z λz,z′ (ξ ) for all z ∈Z), �∗

ξ denotes its transpose, D([0, T], M1(Z)) denotes the space
of M1(Z)-valued càdlàg functions on [0, T] equipped with the Skorokhod J1 topology (we
assume that all paths are left-continuous at T), and both μ(t) and μ̇(t) are viewed as column
vectors. The above ODE is referred to as the McKean–Vlasov equation. The above convergence
result enables one to view the process μN as a small random perturbation of the ODE (1.1).

We now elaborate on the large-time behaviour of μN . Suppose that the limiting McKean–
Vlasov equation (1.1) has multiple ω-limit sets (multiple stable equilibria and/or limit cycles).
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88 S. YASODHARAN AND R. SUNDARESAN

If we focus on a fixed time interval [0, T], let the number of particles N → ∞, and let the initial
conditions μN(0) converge weakly to a deterministic limit ν, then the mean-field convergence
suggests that the empirical measure process tracks the solution to the McKean–Vlasov equation
(1.1) over [0, T] starting at ν. If we then let T → ∞, the solution to the McKean–Vlasov
equation goes to an ω-limit set of (1.1) depending on the initial condition ν. On the other
hand, for a large but fixed N, the process would track the McKean–Vlasov equation with high
probability and, as time becomes large, would thus enter a neighbourhood of the ω-limit set
corresponding to the initial condition ν; however, because of the randomness in the finite-N
system, the process can exit the basin of attraction of this ω-limit set. It is then likely to remain
in a neighbourhood of another ω-limit set for a large amount of time before transiting to the
next one, and so on. These are examples of metastable phenomena, and it turns out that the
sojourn times in the basin of attraction of an ω-limit set are of the order exp{O(N)}, as we shall
soon see. The proof of Theorem 1.1 exploits quantitative estimates of the following metastable
phenomena:

(i) the mean time spent by the process near an ω-limit set,

(ii) the probability of first reaching a particular ω-limit set’s neighbourhood before reaching
the neighbourhood of another one, and

(iii) the probability of traversing the neighbourhoods of a given set of ω-limit sets in a
particular order.

These quantifications are important in their own right as they help predict the performance
of engineered systems, some of which we will describe in Section 1.4. We study the aforemen-
tioned metastability questions in Section 3. Such large-time phenomena for diffusion processes
with a small noise parameter have been studied in the past by Freidlin and Wentzell [20] under
the ‘general position condition’ (see [20, Sections 6.4–6.6]). Hwang and Sheu [25] studied
large-time behaviour for diffusion processes under a more general setup. The key in both these
works is the large deviation properties of the small-noise diffusion processes over finite time
durations, which have been established in [20, Chapter 5]. In this paper, we extend the analysis
to Markov mean-field jump processes, specifically (μN(·))N≥1.

The proof of Theorem 1.1 is carried out using lower bounds (Theorem 3.2) for the prob-
ability that, starting from any point in MN

1 (Z), the process μN is in a small neighbourhood
of (one of) the most stable ω-limit set(s) (see Section 3.5 for a precise definition) of the
McKean–Vlasov equation (1.1) when time is of the order exp{N(� − δ0)}, for a small δ0 > 0.
The constant � is defined using ‘costs of passages’ between the ω-limit sets of the McKean–
Vlasov equation (1.1). These costs are quantified in terms of the large deviations rate function
associated with the process μN via certain graphs called W-graphs (see Section 3.2 for the def-
inition of W-graphs). In particular, � is positive when the limiting dynamics (1.1) has multiple
stable ω-limit sets. See (3.6) for a precise definition of �.

Our next result is, in a certain sense, a converse of Theorem 1.1. Let i0 be (one of) the most
stable ω-limit set(s) of (1.1).

Theorem 1.2. There exist ν0 ∈ M1(Z), δ > 0, β > 0, ρ1 > 0, and N0 ≥ 1 such that, with T =
exp{N(� − δ)},

Pν

(
μN(T) ∈ (the ρ1 − neighbourhood of i0

))≤ exp{−Nβ}

for all ν in the ρ1-neighbourhood of ν0 in MN
1 (Z) and N ≥ N0.
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In other words, when time is of the order exp{N(� − δ)}, there are initial conditions ν ∈ MN
1 (Z)

such that the probability that μN(exp{N(� − δ)}) is in a small neighbourhood of (one of) the
most stable ω-limit set(s) is exponentially small. The process is then not likely to have equi-
librated because it has not visited a set with high invariant measure. Thus, Theorem 1.1 and
Theorem 1.2 together indicate that the constant � is sharp (in the exponential scale) for the
time required for equilibration of μN(·).

A convergence result similar to that of Theorem 1.1 for the mean-field discrete-time setting
but without the specification of the constant � was established by Panageas and Vishnoi [40].
Let us reemphasise that our setting is a continuous-time setting. To identify the constant �

in this setting, we must study the large deviation asymptotics in greater detail. Theorems 1.1
and 1.2 combine time and the number of particles. Additionally, Theorem 1.1 is a statement
that holds uniformly over all initial conditions, unlike convergence bounds (over time) for a
fixed number of particles with a given initial condition, e.g. [45]. The proof of Theorem 1.1
is inspired by that of Hwang and Sheu in [25, Theorem 2.1, Part I], where similar results are
established for small-noise diffusions.

1.2.2. Asymptotics of the second-largest eigenvalue. Our second main result is on the asymp-
totics of the second-largest eigenvalue of the generator LN of the Markov process μN =
(μN(t), t ≥ 0) when it is reversible with respect to its invariant measure ℘N . That is, the operator
LN is self-adjoint in L2(℘N) and it admits a spectral expansion; let 0 = λN

1 > −λN
2 ≥ −λN

3 ≥ · · ·
denote its eigenvalues in decreasing order. (See Example 4.1 for a description of a reversible
system that arises in statistical physics.) For a fixed N, the convergence speed of the process
μN to its invariant measure (over time) can be understood by studying the modulus of the
second-largest eigenvalue of LN . Using the results on the large-time behaviour of μN and the
convergence result in Theorem 1.1, we show that the modulus of the second-largest eigenvalue
of LN

(
i.e., λN

2

)
scales as exp{−N�}; here � (defined in (3.6)) is the constant that appears in

the statement of Theorem 1.1. More precisely, we have the following.

Theorem 1.3. Assume that LN is reversible with respect to ℘N for each N ≥ 1. Then

lim
N→∞

1

N
log λN

2 = −�.

It turns out that � can be positive only when there are metastable states in the limiting dynamics
(1.1) (i.e., when (1.1) possesses multiple ω-limit sets). In such situations, one expects slower
convergence to the invariant measure for large values of N. On the other hand, � can be 0,
for example, when the limiting dynamics (1.1) has a unique globally asymptotically stable
equilibrium; in this special case, convergence of μN to its invariant measure does not suffer
from the slowing-down phenomenon associated with positive �. In fact, Panageas and Vishnoi
[40] and Panageas et al. [39] show that the mixing time is O(log N) in the discrete-time setting.
Kifer [26] considers a more restrictive discrete-time model, which does not cover the mean-
field model, and identifies the constant analogous to � [26, Theorem 4.3]. The restriction is
that the state space of μN is the same for each N and that a certain uniform finite-duration large
deviation principle (LDP) should hold with the rate function satisfying a continuity property.
One can view our result as an extension of Kifer’s [26, Theorem 4.3] to the continuous-time
mean-field setting, where the state space of the Markov process μN changes with N. Hwang
and Sheu [25] establish a result similar to ours on the scaling of the second-largest eigenvalue
of a reversible small-noise diffusion process, and our method of proof is inspired by their
approach.
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1.2.3. Convergence to a global minimum via controlled addition of particles. Our third main
result is on the convergence of the empirical measure process to a global minimum of a natural
‘entropy’ function when particles are injected over time at a specific rate reminiscent of the
simulated annealing algorithm’s cooling schedule, N(t) = ⌊ log(2+t)

c∗+δ

⌋
for a suitable c∗ and any

δ > 0. This entropy function is the large deviations rate function associated with the sequence
of invariant measures {℘N, N ≥ 1}, which is in turn defined in terms of the large deviations rate
function associated with the process μN ; see (3.5) for its definition.

Fix c > 0. Let N0 = min{n ∈N : exp{nc} − 2 ≥ 0}, tN0 = 0, and for each N > N0, let tN =
exp{Nc} − 2. We construct a process with controlled addition of particles as follows. We start
with N0 particles with certain initial states and let the process evolve according to the gen-
erator LN0 until time tN0+1. For each N > N0, we add an extra particle at time tN , and for a
fixed state z0 ∈Z , we set the state of the new particle to z0 and let the process evolve accord-
ing to the generator LN from tN to tN+1 (see Section 5 for a more precise description of the
process). Let μ̄ denote the above time-inhomogeneous Markov process and let P0,ν denote the
law of μ̄ on D([0, ∞), M1(Z)) with initial condition μ̄(0) = ν. Also, let L̃0 denote the set of all
global minima of the entropy function (see Section 3.5.1 for the precise definition of L̃0). Our
convergence result is the following.

Theorem 1.4. Assume that L̃0 �= L. There exists a constant c∗ > 0 such that for all c > c∗ and
any ρ1 > 0,

P0,ν

(
μ̄(t) ∈ (the ρ1 − neighbourhood of L̃0

))→ 1

as t → ∞, uniformly for all ν ∈ MN0
1 (Z).

Note that the convergence to a global minimum holds for all starting points. This is of use
in situations where a population growth schedule is applied in order to engineer the mean-
field system’s movement to a desired equilibrium point, as time t → ∞. One can also use this
approach to study numerically the most likely region in which the process μN spends time
for large values of N, under stationarity. Again, our proof is inspired by the analysis of the
simulated annealing algorithm in [25, Part III]. We can also choose the transition rates of the
particles so as to minimise a given ‘nice’ function on M1(Z); see Example 5.1.

1.3. Key ingredients for the proofs

The proofs of our main results follow the outlines in [25]. However, in order to make
them work in our present context (which involves jump Markov processes and the mean-field
setting), we make use of the following properties:

• a uniform version of the finite-duration LDP for {(μN(t), 0 ≤ t ≤ T), N ≥ 1}, where the
uniformity is over the initial condition;

• continuity of the cost function associated with movement between points on the simplex
M1(Z);

• the strong Markov property of μN(·).
The key insight of this paper is the abstraction of these three properties and their importance in
establishing the large-time behaviour and metastability properties of mean-field systems. We
leverage the results of [12] to establish the above properties.

We now describe the key ideas in each of the main results.
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To prove Theorem 1.1, one possible approach is to wait long enough for the process μN to
hit a neighbourhood of (one of) the most stable ω-limit set(s) of (1.1), regardless of the ini-
tial condition, and then allow sufficient additional time for the process to mix well. We prove
Theorem 1.1 using this idea; we first consider a sequence of passages of μN between neigh-
bourhoods of ω-limit sets of (1.1) to reach (one of) the most stable ω-limit set(s). Each of these
passages takes place between ‘stable’ subsets of ω-limit sets called cycles (see Section 3.3).
The probability of each of these passages over time intervals of the form exp{N × constant}
for appropriate constants can be bounded below, thanks to the uniform large deviation prop-
erty of μN (see Theorem 3.2). We then tie them up using the strong Markov property of μN .
These steps yield a lower bound on the transition probability for μN (see Corollary 3.4), and
Theorem 1.1 follows as a consequence of this. We can also produce an upper bound for the
probability of these passages for suitable initial conditions if not enough time has elapsed (see
(3.8) in Theorem 3.2). Theorem 1.2 follows as a consequence of this upper bound.

Theorem 1.3 follows from an application of Theorem 1.1. We use the spectral expansion
of the generator of μN , when it is reversible with respect to its invariant measure ℘N , and the
LDP for {℘N, N ≥ 1} to prove Theorem 1.3.

In Theorem 1.4, to bring the process μN to (one of) the most stable ω-limit set(s) of (1.1)
(i.e., one of the global minima of our entropy function), regardless of the initial condition, we
introduce new particles over time in a controlled fashion. Before reaching a global minimum,
the system may possibly explore other local minima. Since addition of particles amounts to
reduction of ‘noise’ in the process μN , we must make sure that particles are introduced suffi-
ciently slowly over time so that the system does not get trapped in a local minimum. This is
achieved by the choice of our particle addition schedule N(t), t ≥ 0, which is the analogue of
the cooling schedule in simulated annealing. The schedule also enables us to apply the uni-
form LDP over sufficiently long time durations to μ̄ so as to extend the results on large-time
behaviour used in the proof of Theorem 1.1 to the present situation when the number of par-
ticles changes over time (see Lemmas 5.1–5.3). These extensions, along with the method of
analysing the passages of the system through cycles (the idea used in the proof of Theorem 1.1),
enable us to prove a 1 − o(1) lower bound on the probability that μ̄(t) belongs to a neighbour-
hood of a global minimum of our entropy function as t → ∞, no matter where we start the
process.

1.4. Examples

The mean-field interacting particle system that we have described can be used to model
many interesting phenomena that arise in various domains, such as physics, engineering, and
biology. In this section, we shall describe some applications that are relevant to communication
networks and shall indicate the related literature that studies these applications via mean-field
models. Naturally, the examples and the related literature that we mention below are by no
means exhaustive.

The first example is load balancing in networks. We describe the simplest model, the power
of two choices, studied by Mitzenmacher [36]. Here, each particle is a single-server M/M/1
queue, and the state represents the number of customers waiting in the queue. In load bal-
ancing, one is interested in routing the incoming customers to an appropriate queue so as to
minimise the average delay experienced by a customer. The obvious way to do this is to route
the customer to a queue with the lowest number of waiting customers. But, since there are
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a large number of queues, it is expensive to poll all of them and find the ones with the low-
est number of customers. So a simple alternative is to pick a queue at random and route the
incoming customer to that queue; this is studied in [24]. It turns out that, if we pick two queues
at random and route the customer to the least loaded queue of the two (with ties broken uni-
formly at random), the delay decreases dramatically. This algorithm demonstrates the power of
two choices, and the evolution of the state of each queue under this algorithm can be described
using the mean-field model which has been used to analyse the delay performance [36]. For
related problems on load balancing in networks, see Mukhopadhyay et al. [37], who study
heterogeneous servers, Aghajani et al. [1, 2], who study non-Markovian queues, and the ref-
erences therein. Note that one important difference from our setting is that the state space of
a queue is countably infinite in this class of problems. The finite-state-space model arises in
the above settings when the buffers are finite and packets arriving at a fully buffered queue are
lost.

Another example arises in the modelling of a wireless local area network (WLAN). Here,
each particle is a wireless node trying to access a common medium, and the state of a particle
represents the aggressiveness with which a packet transmission is attempted. The nodes interact
with each other via the medium access control (MAC) protocol implemented in the system.
Whenever a wireless node encounters a collision due to a transmission from another node, it
changes its state to a less aggressive one, and whenever it succeeds, it changes its state to a
more aggressive one. Therefore, the evolution of the state of a node depends on the empirical
measure of the states of all the nodes, as in our mean-field model. This model was first proposed
by Bianchi [8] and has proved to be useful in analysing the performance of the MAC protocol.
Other works that focus on the WLAN application include Bordenave et al. [11], who studied a
two-time-scale mean-field interacting particle system with a fast-varying background process
to model partial interference among nodes; Kumar et al. [28], who used the mean-field model
to study the performance of WLANs using a fixed-point analysis; and Ramaiyan et al. [41]
and Bhattacharya and Kumar [7], who looked at the problem of short-term unfairness using the
aforementioned fixed-point analysis. Note that our model is a continuous-time modification of
the discrete-time models in the above papers. Yet the continuous-time model provides accurate
predictions about the discrete-time model; see [12, p. 4]. Some papers work directly with the
continuous-time model; see, for example, Boorstyn et al. [10].

Other applications that use the mean-field model include analysis and control of spread of
epidemics in networks [6, 3, 29], dynamic routing in circuit-switched networks [4], scheduling
in cellular systems [32], and game-theoretic modelling and analysis of behaviour of agents in
societal networks [42, 31].

1.5. Outline of the paper

The rest of the paper is organised as follows. In Section 2, we discuss LDPs for the empirical
measure process μN over a finite time horizon. These play an important role in the study of the
large-time behaviour of μN and the LDP for the invariant measure {℘N}N≥1. We then study
the large-time behaviour of the process μN in Section 3, and prove our first main result on the
proximity of the law of μN to its invariant measure. In Section 4, we study the asymptotics of
the second-largest eigenvalue of the generator of the process μN in the reversible case. Finally,
in Section 5, we study the convergence of the empirical measure process to a global minimum
of the aforementioned entropy function when particles are injected into the system at a suitable
rate.
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2. Preliminaries: large deviations over finite time durations

In this section, we present a large deviation principle (LDP) for the process μN over finite
time durations. This result will be used later to study the large-time behaviour of μN and the
rate of convergence of μN to its invariant measure.

Fix T > 0. We introduce some notation. Let P
(N)
νN ,[0,T] denote the solution to the

D([0, T], M1(Z))-valued martingale problem for LN , i.e., the law of the empirical measure
process (μN(t), 0 ≤ t ≤ T), and let P(N)

νN ,T denote the law of the terminal-time empirical mea-
sure μN(T) ∈ M1(Z), with a deterministic initial condition μN(0) = νN . Let AC[0, T] denote
the space of absolutely continuous M1(Z)-valued paths on [0, T] (in particular they are
differentiable for almost all t ∈ [0, T]; see [30, Definition 3.1]). Define

τ ∗(u) :=

⎧⎪⎨
⎪⎩

∞ if u < −1,

1 if u = −1,

(u + 1) log(u + 1) − u if u > −1,

which is the Fenchel–Legendre transform of τ (u) = eu − u − 1, u ∈R. Recall the definition of
the family of rate matrices (�ξ, ξ ∈ M1(Z)) from Section 1. We have the following LDP for

the sequence
{
P

(N)
νN ,[0,T]

}
N≥1

on D([0, T], M1(Z)) (see [30, Theorem 3.1], [12, Theorem 3.2]).

See [17, Section 1.2] for the definition of an LDP and a good rate function.

Theorem 2.1. Suppose that the initial conditions νN → ν in M1(Z). Then the sequence of

probability measures
{
P

(N)
νN ,[0,T], N ≥ 1

}
on the space D([0, T], M1(Z)) satisfies the LDP with

good rate function S[0,T](·|ν) defined as follows. If μ(0) = ν and μ ∈AC[0, T], then

S[0,T](μ|ν) =
∫

[0,T]
sup

α∈R|Z|

{∑
z∈Z

α(z)(μ̇t(z) − �∗
μt

μt(z))

−
∑

(z,z′)∈E
τ (α(z′) − α(z))λz,z′(μt)μt(z)

}
dt,

and S[0,T](μ|ν) = +∞ otherwise. Moreover, if S[0,T](μ|ν) < ∞, then there exists a unique fam-
ily of rate matrices L(t) = (lz,z′ (t), z, z′ ∈Z), 0 ≤ t ≤ T, such that t 
→ L(t) is measurable, μ is
the solution to

μ̇(t) = L(t)∗μ(t), 0 ≤ t ≤ T, μ(0) = ν,

and

S[0,T](μ|ν) =
∫

[0,T]

∑
(z,z′)∈E

μ(t)(z)λz,z′(μ(t))τ ∗
(

lz,z′ (t)

λz,z′ (μ(t))
− 1

)
dt,

where L(t)∗ denotes the transpose of L(t), t ∈ [0, T].

We can interpret the rate function S[0,T] as follows. Starting at νN , the process μN is likely
to be in the neighbourhood of the solution to the McKean–Vlasov equation (1.1) with initial
condition ν (with high probability). In order for the process μN to be in the neighbourhood
of some other path, we need to apply a control given by the rate matrix L; S[0,T](μ|ν) is the
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cost of this control. In particular, since the solution to the McKean–Vlasov equation starting
at ν has zero cost (i.e., S[0,T](μν |ν) = 0, where μν denotes the solution to (1.1) starting at ν),

the limiting behaviour that μN(·) P−→ μν(·) in D([0, T], M1(Z)) as N → ∞ follows. See [18]
for some remarks about the form of the rate function and for another representation of the rate
function in terms of a relative entropy.

Here is an outline of the proof of Theorem 2.1: one looks at a system of non-interacting
particles where the transition rates of a particle do not depend on the empirical measure, and
considers the corresponding empirical measure process over [0, T]. Since at most one par-
ticle can jump at a given point in time, the measure P

(N)
νN ,[0,T] is absolutely continuous with

the measure corresponding to the above non-interacting system on D([0, T], M1(Z)). One
can then write the Radon–Nikodym derivative using the Girsanov formula and show conti-
nuity properties of the same. An application of an extension of Sanov’s theorem (see [14,
Theorem 3.5]) tells us that the non-interacting particle system obeys the LDP on
D([0, T], M1(Z)). The above theorem then follows by an application of Varadhan’s integral
lemma (see [17, Theorem 4.3.1]). This approach has been carried out for a system of interact-
ing diffusions in [14] and for jump processes in [30, 12]. One can also prove various special
cases of Theorem 2.1 via other simpler methods; for example, for fixed initial conditions, i.e.,
when νN = δz for some z ∈Z and for all N ≥ 1, one can use a modification of Varadhan’s
lemma to obtain the LDP for P(N)

δz,[0,T] (see [16]). However, it is crucial to let the initial condi-
tion be arbitrary, except for the constraint that νN → ν weakly, to obtain a uniform version of
Theorem 2.1 (see Corollary 2.1), which is used to prove our main results.

We now recall a theorem that gives the LDP for the sequence
{
P

(N)
νN ,T

}
N≥1

on M1(Z). This

can be obtained from the above theorem by an application of the contraction principle to
the coordinate projection map D([0, T], M1(Z)) � μ 
→ μ(T) (see [17, Theorem 4.2.1], [12,
Theorem 3.3]).

Theorem 2.2. Suppose that the initial conditions νN → ν in M1(Z). Then the sequence of

probability measures
{
P

(N)
νN ,T

}
N≥1

on the space M1(Z) satisfies the LDP with the good rate

function

ST (ξ |ν) := inf{S[0,T](μ|ν) : μ(0) = ν, μ(T) = ξ, μ ∈AC[0, T]}.
Moreover, the above infimum is attained, i.e., there exists a path μ̂ ∈AC[0, T] such that
μ̂(0) = ν, μ̂(T) = ξ , and S[0,T](μ̂|ν) = ST (ξ |ν).

Here, ST (ξ |ν) can be interpreted as the minimum cost of passage from the profile ν to the
profile ξ in time T , among all paths from ν to ξ in time T . It can be shown that ST is continuous
on M1(Z) × M1(Z) by constructing piecewise constant velocity trajectories between points on
M1(Z) (see [12, Lemma 3.3]).

We also have the following uniform LDP for the sequence
{
P

(N)
νN ,[0,T]

}
N≥1

(see [12,

Corollary 3.1]) when the initial condition is allowed to lie in a compact set.

Corollary 2.1. For any compact set K ⊂ M1(Z), any closed set F ⊂ D([0, T], M1(Z)), and any
open set G ⊂ D([0, T], M1(Z)), we have

lim sup
N→∞

1

N
log sup

ν∈K∩MN
1 (Z)

P
(N)
ν,[0,T](μN ∈ F) ≤ − inf

ν∈K
inf
μ∈F

S[0,T](μ|ν), (2.1)
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and

lim inf
N→∞

1

N
log inf

ν∈K∩MN
1 (Z)

P
(N)
ν,[0,T](μN ∈ G) ≥ − sup

ν∈K
inf
μ∈G

S[0,T](μ|ν). (2.2)

For a proof of the above, see [17, Corollary 5.6.15]. Note that, since the space M1(Z) is
compact, we may take K = M1(Z) in the above corollary.

Remark 2.1. The version of the uniform LDP presented in Corollary 2.1 is slightly dif-
ferent from the definition of the uniform LDP in Freidlin and Wentzell [20, Section 3,
Chapter 3]. The version presented here suffices for the proofs of our main results, since our state
space M1(Z) is compact and the rate function ST defined in Theorem 2.2 is continuous (see
[43, Theorem 2.7] and [12, Appendix A]).

3. Large-time behaviour

In the study of the large-time behaviour of μN , an important role is played by the Freidlin–
Wentzell quasipotential V : M1(Z) × M1(Z) → [0, ∞), defined by

V(ν, ξ ) := inf
{
S[0,T](μ|ν) : μ(T) = ξ, T > 0

}
;

i.e., V(ν, ξ ) denotes the minimum cost of transport from ν to ξ in an arbitrary but finite time.
We say that ν ∼ ξ (ν is equivalent to ξ ) if V(ν, ξ ) = 0 and V(ξ, ν) = 0. It is easy to see

that ∼ defines an equivalence relation on M1(Z). To study the large-time behaviour of the
process μN , we make the following assumptions on the McKean–Vlasov equation (1.1) (see
[20, Chapter 6, Section 2, Condition A]):

(B1) There exist a finite number of compact sets K1, K2, . . . , Kl such that the following hold:

• For each i = 1, 2, . . . , l, ν1, ν2 ∈ Ki implies ν1 ∼ ν2.

• For each i �= j, ν1 ∈ Ki and ν2 ∈ Kj implies ν1 � ν2.

• Every ω-limit set of the dynamical system (1.1) lies completely in one of the compact
sets Ki.

Since V(ν1, ν2) = 0 whenever ν1, ν2 ∈ Ki for any 1 ≤ i ≤ l, we can define

V
(
Ki, Kj

)
:= inf

{
S[0,T](μ|ν) : ν ∈ Ki, μ(T) ∈ Kj, T > 0

}
,

which is interpreted as the minimum cost of going from Ki to Kj. We also define the minimum
cost of going from Ki to Kj without touching the other compact sets Kk, k �= i, j, by

Ṽ
(
Ki, Kj

)
:= inf

{
S[0,T](μ|ν) : ν ∈ Ki, μ(t) /∈ ∪k �=i,jKk

for all 0 ≤ t ≤ T, μ(T) ∈ Kj, T > 0
}
. (3.1)

Using the definition of the rate function ST , note that

V(ν, ξ ) = inf
T>0

ST (ξ |ν) and V
(
Ki, Kj

)= inf
ν∈Ki,ξ∈Kj

V(ν, ξ ).
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Example 3.1. We provide two examples where (B1) is satisfied.

1. (Wireless local area network.) Let Z = {0, 1}. The edgeset E consists of the edges (0, 1)
and (1, 0). Define the transition rates

λz,z′ (ξ ) =
{

c0(1 − exp{−(c0ξ (0) + c1ξ (1))}) if z = 0, z′ = 1,

c1 if z = 1, z′ = 0,

where c0, c1 > 0. The limiting dynamics (1.1) is a one-dimensional ODE, and it is
given by

μ̇t(0) = −c0μt(0)(1 − exp{−(c0μt(0) + c1(1 − μt(0)))}) + c1(1 − μt(0)), t ≥ 0.

Let f (x) = −c0x(1 − exp{−(c0x + c1(1 − x))}) + c1(1 − x), x ∈ [0, 1]. Note that f (0) > 0
and f (1) < 0. It is easy to check that if c0 > c1, then f ′(x) < 0 for all x ∈ (0, 1). As
a consequence, there exists a unique ξ∗ ∈ M1(Z) such that all trajectories of the
above dynamical system converge to ξ∗(0). Thus, Assumption (B1) holds with l = 1,
K1 = {ξ∗}.

2. (Dynamic alternate routing in loss networks.) Fix C ∈Z+ and let Z = {0, 1, . . . , C}.
The edgeset E consists of the forward edges {(z, z + 1), 0 ≤ z ≤ C − 1} and the back-
ward edges {(z, z − 1), 1 ≤ z ≤ C}. For (z, z′) ∈ E and ξ ∈ M1(Z), define the transition
rates

λz,z′ (ξ ) =
{

z if z �= 0, z′ = z − 1,

α + αξ (C) × 2(1 − ξ (C)) if z �= C, z′ = z + 1,

where α > 0. This model arises in the context of dynamic alternate routing in loss net-
works. For certain values of α, the limiting ODE (1.1) possesses two stable equilibria(
say ξ∗

1 and ξ∗
2

)
and an unstable equilibrium

(
say ξ∗

3

)
[23, 38]. Thus, Assumption (B1)

is satisfied with l = 3, Ki = {ξ∗
i }, i = 1, 2, 3.

For a model of malware propagation where a limit cycle and an unstable equilibrium arise,
see Benaïm and Le Boudec [6, Section 4.1].

3.1. Preliminary results

It turns out that, under Assumption (B1), the large-time behaviour of the process μN can
be studied via a discrete-time Markov chain whose state space is the union of small neigh-
bourhoods of the compact sets Ki, 1 ≤ i ≤ l. To study this chain, we introduce some notation.
Let L = {1, 2, . . . , l}. Given 0 < ρ1 < ρ0, let γi (resp. �i) denote the ρ1-open neighbour-
hood (resp. ρ0-open neighbourhood) of Ki. Let γ = ∪l

i=1γi, � = ∪l
i=1�i, and C = M1(Z) \ �.

For a set A ⊂ M1(Z) and δ > 0, let [A]δ denote the δ-open neighbourhood of A, and for a
subset W ⊂ L, abusing notation, let [W]δ denote the δ-open neighbourhood of ∪i∈WKi. For
each n ≥ 1, we define the sequence of stopping times τ0 := 0, σn := inf{t > τn−1 : μN(t) ∈ C},
τn := inf{t > σn : μN(t) ∈ γ }; and we define ZN

n := μN(τn). Since μN is strong Markov, ZN

is a discrete-time Markov chain, and ZN
n ∈ γ ∩ MN

1 (Z) for all n ≥ 1. For a measurable set
A ∈ M1(Z), we define the stopping time τA := inf{t > 0 : μN(t) /∈ A}, which denotes the time
of first exit from the set A. Finally, for a subset W ⊂ L, we define the stopping times τ̂W :=
inf{t > 0 : μN(t) ∈ ∪i∈Wγi} and τ̄W := inf{t > 0 : μN(t) ∈ ∪i∈L\Wγi}, which denote the time of
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entry into the ρ1-neighbourhood of W and the time of entry into the ρ1-neighbourhood of
L \ W, respectively.

We now state some results on the behaviour of the exit time from certain sets, which will
be used in the paper subsequently. These results are known in the case of both Markov jump
processes and diffusion processes; see [12, Appendix], and [20, Chapter 6, Section 2]. The
main ingredients that are used in proving these results are (i) the strong Markov property of
the μN process, (ii) Theorem 2.1 and Corollary 2.1 on the LDP for finite time durations, and
(iii) the joint continuity of the terminal-time rate function ST (·|·) (see [12, Lemma 3.3]). Recall
that Pν denotes the law of (μN(t), t ≥ 0) with initial condition μN(0) = ν and Eν denotes the
corresponding expectation.

Lemma 3.1. ([12, Lemma A.3].) Let K ⊂ M1(Z) be a compact set such that all points in K are
equivalent to each other (i.e., ν1 ∼ ν2 for all ν1, ν2 ∈ K), and K �= M1(Z). Then, given ε > 0,
there exist δ > 0 and N0 ≥ 1 such that for all N ≥ N0 and ν ∈ [K]δ ∩ MN

1 (Z),

Eντ[K]δ ≤ exp{Nε}.
Lemma 3.2. ([12, Lemma A.4].) Let K ⊂ M1(Z) be a compact set and let G be a neighbour-
hood of K. Then, given ε > 0, there exist δ > 0 and N0 ≥ 1 such that for all ν ∈ [K]δ ∩ MN

1 (Z)
and N ≥ N0,

Eν

(∫ τG

0
1{μN (t)∈[K]δ}dt

)
≥ exp{−Nε}.

Lemma 3.3. ([12, Lemma A.5].) Let K ⊂ M1(Z) be a compact set that does not contain any
ω-limit set of (1.1) entirely. Then, there exist positive constants c, T0 and N0 ≥ 1 such that for
all T ≥ T0, N ≥ N0 and any ν ∈ K ∩ MN

1 (Z), we have

Pν(τK ≥ T) ≤ exp{−Nc(T − T0)}.
Corollary 3.1. Under the conditions of Lemma 3.3, there exist C > 0 and N0 ≥ 1 such that for
all ν ∈ K ∩ MN

1 (Z) and N ≥ N0,

EντK ≤ C.

Recall the definition of the discrete-time Markov chain ZN on γ ∩ MN
1 (Z). The next lemma

gives upper and lower bounds on the one-step transition probabilities of the chain ZN . These
estimates play an important role in the study of the large-time behaviour of the process μN , as
we shall see in the sequel.

Lemma 3.4. ([12, Lemma A.6].) Given ε > 0, there exist ρ0 > 0 and N0 ≥ 1 such that, for any
ρ2 < ρ0, there exists ρ1 < ρ2 such that for any ν ∈ [Ki]ρ2 ∩ MN

1 (Z) and N ≥ N0, the one-step
transition probability of the chain ZN satisfies

exp
{−N

(
Ṽ
(
Ki, Kj

)+ ε
)}≤ P

(
ν, γj

)≤ exp
{−N

(
Ṽ
(
Ki, Kj

)− ε
)}

. (3.2)

Remark 3.1. In the above statement, P
(
ν, γj

)
is defined as P

(
ν, γj

)
:= Pν

(
ZN

1 ∈ γj
)=

Pν

(
μN(τ1) ∈ γj

)
.

The key ingredient in the proof of the above lemma is Corollary 2.1 on the uniform LDP
on bounded sets. For the lower bound, one constructs a specific trajectory from ν to Kj and
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examines its cost. For the upper bound, one uses the strong Markov property at the hitting
time of [L]ρ1 and the uniform LDP. For details, the reader is referred to the proof of [12,
Lemma A.6] for the case of Markov jump processes, and the proof of [20, Lemma 2.1, p. 152]
for the case of small-noise diffusions.

3.2. Behaviour near attractors indexed by subsets of L

We now recall some results on the behaviour of the process μN near a small neighbourhood
of attractors indexed by a given subset of L. Let W ⊂ L, W �= ∅. A W-graph is a directed graph
on L such that (i) each element of L \ W has exactly one outgoing arrow and (ii) there are no
closed cycles in the graph. We denote the set of W-graphs by G(W). For each i ∈ L, we denote
G({i}) by G(i). For a W-graph g, define

Ṽ(g) =
∑

(m→n)∈g

Ṽ(Km, Kn). (3.3)

If g does not have any edges (e.g., when L is a singleton), we use the convention Ṽ(g) = 0.
Note that, using the estimate (3.2), Ṽ can be used to estimate the probability that the process
μN traverses a sequence of neighbourhoods in the order specified by the graph g.

For i ∈ L \ W and j ∈ W, let Gi,j(W) denote the set of W-graphs in which there is a sequence
of arrows leading from i to j. Define

Ii,j(W) := min{Ṽ(g) : g ∈ Gi,j(W)} − min{Ṽ(g) : g ∈ G(W)}.
We recall the following result on the probability that the first entry of μN into a neighbourhood
of a set W ⊂ L takes place via a given compact set Kj, starting from a neighbourhood of Ki.

Lemma 3.5. Let W ⊂ L, and let i ∈ L \ W and j ∈ W. Given ε > 0, there exist ρ > 0 and N0 ≥ 1
such that for any ρ1 ≤ ρ, ν ∈ γi ∩ MN

1 (Z), and N ≥ N0, we have

exp
{−N

(
Ii,j(W) + ε

)}≤ Pν

(
μN
(
τ̂W
) ∈ γj

)≤ exp
{−N

(
Ii,j(W) − ε

)}
.

Proof. The proof of [20, Lemma 3.3, p. 159] holds verbatim, by making use of the estimates
in Lemma 3.4. �
Remark 3.2. While the above lemma provides an estimate of the probability Pν

(
μN
(
τ̂W
) ∈ γj

)
,

it does not provide any information about the sequence of states in L visited by the process μN

while traversing from i to j. The latter can be understood via studying the minimisations in the
definition of Ii,j; see [21].

Our next step is to understand the mean entry time Eν τ̂W . For this, we need the following
estimate on the stopping time τ1; see [25, Lemma 1.3, Part I] for a similar estimate for small-
noise diffusion processes.

Lemma 3.6. Given ε > 0, there exist ρ1 > 0 and N0 ≥ 1 such that, for any ν ∈ γ ∩ MN
1 (Z) and

N ≥ N0, we have

Eντ1 ≤ exp{Nε}.
Proof. With a sufficiently small ρ1 > 0 to be chosen later, let ρ0 = 2ρ1 so that [Ki]ρ0 does

not intersect with [Kj]ρ0 for all j �= i. Note that, for any ν ∈ γ ,

Eντ1 =Eνσ1 +Eν(τ1 − σ1).
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Consider the first term. By Lemma 3.1, there exist ρ > 0 and N0 ≥ 1 such that for all ρ1 ≤ ρ,
ν ∈ γ ∩ MN

1 (Z), and N ≥ N0, we have

Eνσ1 ≤ exp{Nε/2}.
Let F = M1(Z) \ γ . By the strong Markov property, the second term is

Eν(τ1 − σ1) =EμN (σ1)(τF).

Therefore, it suffices to estimate Eν′τF for ν′ ∈ F. Since the compact set F does not contain
any ω-limit set, by Corollary 3.1, there exist a constant C > 0 and N1 ≥ N0 such that for any
ν′ ∈ F ∩ MN

1 (Z)

Eν′τF ≤ C.

This completes the proof of the lemma. �
Define

Ii(W) := min{Ṽ(g) : g ∈ G(W)}
− min{Ṽ(g) : g ∈ G(W ∪ {i}) or g ∈ Gi,j(W ∪ {j}), i �= j, j ∈ L \ W}.

The next lemma is about the mean entry time into a neighbourhood of a given set W ⊂ L
starting from a neighbourhood of Ki; see [25, Lemma 1.6, Part I] for a similar estimate on
small-noise diffusion processes.

Lemma 3.7. Let W ⊂ L, and let i ∈ L \ W. Given ε > 0, there exist ρ > 0 and N0 ≥ 1 such that
for any ρ1 ≤ ρ, ν ∈ γi ∩ MN

1 (Z), and N ≥ N0, we have

exp{N(Ii(W) − ε)} ≤Eν τ̂W ≤ exp{N(Ii(W) + ε)}.
Proof. We first prove the upper bound. Note that, by the strong Markov property, we have

Eν τ̂W =Eντv ≤
∞∑

m=1

Eν

(
1{v=m} × m sup

ν′∈γ

Eν′τ1

)
,

where v is the hitting time of the chain ZN
n on the set W. Using Lemma 3.6 and the upper bound

on Eνv derived in [20, Lemma 3.4, p. 162], for sufficiently small ρ1 and sufficiently large N,
we have that

Eν τ̂W ≤ exp{N(Ii(W) + ε)}
holds for all ν ∈ γi ∩ MN

1 (Z). For the lower bound, Lemma 3.2 implies that, for all sufficiently
small ρ1 and sufficiently large N, we have that

Eντ1 ≥ exp{−Nε}
holds for all ν ∈ γ . Also,

Eν τ̂W =Eντv ≥
∞∑

m=1

Eν

(
1{v=m} × m inf

ν′∈γ
Eν′τ1

)
;

hence, using the lower bound on Eνv derived in [20, Lemma 3.4, p. 162], we get

Eν τ̂W ≥ exp{N(Ii(W) − ε)}
for all ν ∈ γi ∩ MN

1 (Z) and sufficiently large N. �
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3.3. Cycles

We now define the notion of cycles, which helps us to describe the most probable way in
which the process μN , for large N, traverses neighbourhoods of various compact sets Ki, and
the time required to go from one to another. Recall the definition of Ṽ from (3.1). We interpret
Ṽ
(
Ki, Kj

)
as the ‘communication cost’ from i to j. Define Ṽ(Ki) := minj �=i Ṽ

(
Ki, Kj

)
. We say

that i → j if Ṽ(Ki) = Ṽ
(
Ki, Kj

)
. For j �= i, the probability that μN hits a small neighbourhood

of Kj upon exit from a small neighbourhood of Ki is of the form exp
{−N(Ṽ

(
Ki, Kj

)− Ṽ(Ki))
}
,

and the mean exit time from a small neighbourhood of Ki is of the form exp
{
NṼ(Ki)

}
[20,

Chapter 6, Section 5]. In particular, the indices that attain the minimum above are the sets most
likely to be visited by the process μN , for large enough N, starting from a neighbourhood of
Ki. For i, j ∈ L, we say that i ⇒ j if there exists a sequence of arrows leading from i to j, i.e., if
there exist i1, i2, . . . , in in L such that i → i1 → i2 → · · · → in → j. Again, the above sequence
of arrows from i to j is one among the locally most likely sequences for the process to traverse
from a neighbourhood of Ki to a neighbourhood of Kj, for large N.

Definition 3.1. A 1-cycle π is a directed graph on a subset of elements of L satisfying the
following:

1. i ∈ π and i ⇒ j implies j ∈ π .

2. For any i �= j in π , we have i ⇒ j and j ⇒ i.

That is, a 1-cycle is a subset of the elements of L along with a certain assignment of arrows
among them according to the numbers Ṽ(·, ·). For example, if L = {1, 2, 3}, and 1 → 2,
2 → 1, and 3 → 1 are the only possible arrows (i.e., Ṽ(K1) = Ṽ(K1, K2) < Ṽ(K1, K3), Ṽ(K2) =
Ṽ(K2, K1) < Ṽ(K2, K3), and Ṽ(K3) = Ṽ(K3, K1) < Ṽ(K3, K2)), then the graph on {1, 2} con-
sisting of the arrows 1 → 2 and 2 → 1 is a 1-cycle. The set {3} is not part of a 1-cycle. It can
be shown that a 1-cycle always exists for all L (see the proof of [25, Lemma 1.9, Part I]).

We now define cycles of 1-cycles. Let L0 = L. Define

L1 := {π : π is a 1-cycle in L} ∪ {i ∈ L : i is not in any 1-cycle}.
That is, the elements of L1 are either 1-cycles in L or elements of L that do not belong to any
1-cycle. In the previous example, L1 is the set {{1, 2}} ∪ {{3}}. Ultimately, we view the elements
of L1 as subsets of L. If π ∈ L1, we write K ∈ π to indicate that the index of the compact set
K in {1, 2, . . . , l} is an element of π . We now proceed to define the ‘communication cost’
between the elements of L1. For π1, π2 ∈ L1, π1 �= π2, define

V̂(π1) := max
{
Ṽ(K) : K ∈ π1

}
,

Ṽ(π1, π2) := V̂(π1) + min
{
Ṽ(K1, K2) − Ṽ(K1) : K1 ∈ π1, K2 ∈ π2

}
,

and

Ṽ(π1) := min
{
Ṽ(π1, π2) : π2 ∈ L1, π2 �= π1

}
.

That is, Ṽ(π1, π2) is the communication cost from π1 to π2, and it generalises the quantity
Ṽ
(
Ki, Kj

)
to 1-cycles. Similarly, Ṽ(π1) generalises the quantity Ṽ(Ki) to 1-cycles. If π1, π2

are 1-cycles, π1 �= π2, then upon exit from a small neighbourhood of the elements of π1, the
probability that the process μN enters a small neighbourhood of the elements of π2 is of the
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form exp
{−N

(
Ṽ(π1, π2) − Ṽ(π1)

)}
, and the mean exit time from a small neighbourhood of

the elements of π1 is of the form exp
{
NṼ(π1)

}
. We say that π1 → π2 if Ṽ(π1) = Ṽ(π1, π2),

and we say that π1 ⇒ π2 if there is a sequence of arrows leading from π1 to π2. This gives a
cycle of 1-cycles, which we call a 2-cycle.

Let us now define the hierarchy of cycles. Having defined (m − 1)-cycles and the sets
L0, L1, . . . , Lm−2, we define m-cycles as follows. Define

Lm−1 = {πm−1 : πm−1 is an (m − 1)-cycle
}

∪ {πm−2 ∈ Lm−2 : πm−2 is not in any (m − 1)-cycle
}
.

That is, the elements of Lm−1 are either (m − 1)-cycles or elements of Lm−2 that are not part
of any (m − 1)-cycle; in both cases, they are ultimately viewed as subsets of L. Given πm−1 ∈
Lm−1 and an (m − 2)-cycle πm−2, we write πm−2 ∈ πm−1 if the elements of πm−2 (when it is
viewed as a subset of L) are part of πm−1. For πm−1 ∈ Lm−1, define

V̂
(
πm−1) := max

{
Ṽ
(
πm−2) : πm−2 ∈ πm−1},

Ṽ
(
πm−1

1 , πm−1
2

)
:= V̂

(
πm−1

1

)
+ min

{
Ṽ
(
πm−2

1 , πm−2
2

)− Ṽ
(
πm−2

1

)
: πm−2

1 ∈ πm−1
1 , πm−2

2 ∈ πm−1
2

}
,

and

Ṽ
(
πm−1

1

)
:= min

{
Ṽ
(
πm−1

1 , πm−1
2

)
: πm−1

2 ∈ Lm−1, πm−1
2 �= πm−1

1

}
.

We say that πm−1
1 → πm−1

2 if Ṽ
(
πm−1

1

)= Ṽ
(
πm−1

1 , πm−1
2

)
. We then have the following

definition.

Definition 3.2. An m-cycle πm is a directed graph on a subset of elements of Lm−1 satisfying
the following:

1. For πm−1
1 , πm−1

2 ∈ Lm−1, πm−1
1 ∈ πm and πm−1

1 ⇒ πm−1
2 implies πm−1

2 ∈ πm.

2. For any πm−1
1 , πm−1

2 ∈ πm, we have πm−1
1 ⇒ πm−1

2 and πm−1
2 ⇒ πm−1

1 .

If we continue this way, for some m ≥ 1, the set Lm will eventually be a singleton, at which
point we stop. See [46] for a numerical example that consists of three 1-cycles and a 2-cycle
when L has 9 elements.

We now state some results on the mean exit time from a cycle and the most probable cycle
for the process μN to visit upon exit from a given cycle. For convenience, the set of elements
of L constituting a k-cycle πk (through the hierarchy of cycles) is also denoted by πk. Also,
for W ⊂ L, we define γW = ∪i∈Wγi.

Corollary 3.2. Let πk be a k-cycle and Ki ∈ πk. Let W = L \ πk. Given ε > 0, there exist ρ > 0
and N0 ≥ 1 such that for all ρ1 ≤ ρ, ν ∈ γi ∩ MN

1 (Z), and N ≥ N0, we have

exp
{
N
(
Ṽ
(
πk)− ε

)}≤Eν τ̂W ≤ exp
{
N
(
Ṽ
(
πk)+ ε

)}
.

Corollary 3.3. Let πk
1 , πk

2 be k-cycles, πk
1 �= πk

2 , and Ki ∈ πk
1 . Let W = L \ πk

1 . Given ε > 0,
there exist ρ > 0 and N0 ≥ 1 such that for all ρ1 ≤ ρ, ν ∈ γi ∩ MN

1 (Z), and N ≥ N0, we have

exp
{−N

(
Ṽ
(
πk

1 , πk
2

)− Ṽ
(
πk

1

)+ ε
)}≤ Pν

(
μN(τ̂W ) ∈ γπk

2

)
≤ exp

{−N
(
Ṽ
(
πk

1 , πk
2

)− Ṽ
(
πk

1

)− ε
)}

.
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Remark 3.3. Note that Corollary 3.2 follows from Lemma 3.7 and the fact that Ii(W) =
Ṽ
(
πk
)

(which is shown in [25, Corollary A.4, Appendix]). Corollary 3.3 is a consequence
of Lemma 3.5 along with the fact that min

{
Ii,j(W) : i ∈ π̂k

}= Ṽ
(
πk, π̂k

)− Ṽ
(
πk
)

(see [25,
Corollary A.6, Appendix]). Similar estimates as in Corollaries 3.2 and 3.3 in the case of small-
noise diffusion processes have been shown in [25, Corollary 1.10, Part I] and [25, Corollary
1.11, Part I], respectively.

We also need the following lemmas that provide estimates on the probabilities of exit within
certain times from given cycles.

Lemma 3.8. Let πk
1 , πk

2 be k-cycles and let πk
1 → πk

2 . Then, given ε > 0, there exist δ > 0,
ρ > 0, and N0 ≥ 1 such that for all ρ1 ≤ ρ, ν ∈ γπk

1
∩ MN

1 (Z), and N ≥ N0, we have

Pν

(
τ̄πk

1
≤ exp

{
N
(
Ṽ
(
πk

1

)− δ
)}

, μN
(
τ̄πk

1

) ∈ γπk
2

)
≥ exp{−Nε}.

Lemma 3.9. Let πk be a k-cycle. Then, given ε > 0, there exists ρ > 0 such that for all ρ1 ≤ ρ,
we have

lim
N→∞ sup

ν∈γ
πk ∩MN

1 (Z)

Pν

(
exp
{
N
(
Ṽ
(
πk)− ε

)}≤ τ̄πk ≤ exp
{
N
(
Ṽ
(
πk)+ ε

)})= 1.

Furthermore, given ε > 0, there exist δ > 0, ρ > 0, and N0 ≥ 1 such that for all ρ1 ≤ ρ, N ≥ N0,
and ν ∈ γπk ∩ MN

1 (Z), we have

Pν

(
τ̄πk < exp

{
N
(
Ṽ
(
πk)− δ

)})≤ exp{−Nε}, and

Pν

(
τ̄πk > exp

{
N
(
Ṽ
(
πk)+ δ

)})≤ exp{−Nε}.

Remark 3.4. Lemma 3.9 can be proved as follows. From Corollary 3.2, we have that the mean
exit time from a small neighbourhood of the elements of πk

1 is of the form exp
{
NṼ
(
πk

1

)}
.

From Corollary 3.3, we have that, upon exit from a small neighbourhood of the elements of
πk

1 , the probability that the process μN enters a small neighbourhood of the elements of πk
2 is

of the form exp
{−N

(
Ṽ
(
πk

1 , πk
2

)− Ṽ
(
πk

1

)}
. Using these facts, we can proceed via the proof of

[20, Chapter 4, Theorem 4.2] to transfer the estimate on the mean of τ̄πk
1

to the estimates on

the probability for τ̄πk
1

to lie between exp
{
N
(
Ṽ
(
πk

1

)− δ
)}

and exp
{
N
(
Ṽ
(
πk

1

)+ δ
)}

. To prove
Lemma 3.8, in addition to the above facts, we note that with high probability, the process μN

enters a small neighbourhood of the elements of πk
2 upon exit from a small neighbourhood of

the elements of πk
1 when πk

1 → πk
2 . Similar estimates as in Lemmas 3.8 and 3.9 in the case of

small-noise diffusion processes have been shown in [25, Lemma 2.1, Part I] and [25, Lemma
2.2, Part I], respectively.

Lemma 3.10. Let πk be a k-cycle and assume that Ṽ
(
πk
)
> 0. Given ε > 0, there exist δ > 0,

ρ > 0, and N0 ≥ 1 such that for all ρ1 ≤ ρ, ν ∈ MN
1 (Z), and N ≥ N0, we have

Pν

(
τ̄πk ≤ exp

{
N
(
V̂
(
πk)+ δ

})≤ exp
{−N

(
Ṽ
(
πk)− V̂

(
πk)− ε

)}
.

Proof. We proceed via the steps in the proof of [25, Lemma 2.1, Part III]. Let πk−1 ∈ πk

be a (k − 1)-cycle such that Ṽ
(
πk−1

)= V̂
(
πk
)
. With ρ1 > 0 to be chosen later, for each n ≥ 1,

https://doi.org/10.1017/apr.2022.11 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.11


Large-time behaviour of mean-field models 103

define the minimum of τ̄πk and successive entry and exit times from a ρ1-neighbourhood of
πk−1 as follows:

θ̂0 := inf
{
t > 0 : μN(t) ∈ [πk−1]

ρ1

}∧ τ̄πk ,

θ̄n := inf
{
t > θ̂n−1 : μN(t) ∈ [L \ πk−1]

ρ1

}∧ τ̄πk ,

θ̂n+1 := inf
{
t > θ̄n : μN(t) ∈ [πk−1]

ρ1

}∧ τ̄πk .

With δ > 0 to be chosen later, using the strong Markov property, for any ν ∈ [πk
]
ρ1

∩ MN
1 (Z),

we have

Pν

(
τ̄πk ≤ exp

{
N
(
V̂
(
πk)+ δ

)})
= Pν

(
θ̂0 = τ̄πk , τ̄πk ≤ exp

{
N
(
V̂
(
πk)+ δ

)})
+ Pν

(
θ̂0 < τ̄πk ,

⋃
n≥1

{
τ̄πk = θ̄n, τ̄πk ≤ exp

{
N
(
V̂
(
πk)+ δ

)}
, τ̄πk ≥ θ̂n−1

} )

+ Pν

(
θ̂0 < τ̄πk ,

⋃
n≥1

{
τ̄πk = θ̂n, τ̄πk ≤ exp

{
N
(
V̂
(
πk)+ δ

)}
, τ̄πk ≥ θ̄n

} )
. (3.4)

We now upper-bound each of the terms in (3.4). Consider the first term. It can be shown using
Corollary 3.3 and [25, Corollary A.6, Appendix] that there exist ρ1 > 0 and δ > 0 such that for
any ν ∈ [πk

]
ρ1

and sufficiently large N, we have

Pν

(
θ̂0 = τ̄πk

)≤ exp
{−N

(
Ṽ
(
πk)− V̂

(
πk)− ε

)}
.

Consider the second term in (3.4). For any ν1 ∈ [πk−1
]
ρ1

∩ MN
1 (Z), the probability of the

unionised event can be bounded above by

Pν1

⎛
⎝⋃

n≥1

{
τ̄πk = θ̄n, τ̄πk ≤ exp

{
N
(
V̂
(
πk)+ δ

)}
, τ̄πk ≥ θ̂n−1

}⎞⎠

≤ Pν1

(
M⋃

n=1

{
τ̄πk = θ̄n, τ̄πk ≤ exp

{
N
(
V̂
(
πk)+ δ

)}
, τ̄πk ≥ θ̂n−1

})

+ Pν1

⎛
⎝ ⋃

n≥M+1

{
τ̄πk = θ̄n, τ̄πk ≤ exp

{
N
(
V̂
(
πk)+ δ

)}
, τ̄πk ≥ θ̂n−1

}⎞⎠
≤ Pν1

(
τ̄πk = θ̄n and τ̄πk ≥ θ̂n−1 for some n ≤ M

)
+ Pν1

(
θ̂M ≤ exp

{
N
(
V̂
(
πk)+ δ

)}
and θ̂M ≤ τ̄πk

)
≤ Pν1

(
θ̂M = τ̄πk

)+ Pν1

(
θ̂M ≤ exp

{
N
(
V̂
(
πk)+ δ

)}
and θ̂M ≤ τ̄πk

)
.

Again, the first term above can be bounded by

Pν1

(
θ̂M ≤ τ̄πk

)≤ exp
{−N

(
Ṽ
(
πk)− V̂

(
πk)− ε

)}
,

for all ν1 ∈ [πk−1
]
ρ1

∩ MN
1 (Z) and sufficiently large N. The second term can be bounded by

exp{−NM} for large enough M, by the same argument used in the proof of [25, Lemma 1.7,
Part I]. If we choose M sufficiently large, the above implies that the second term in (3.4) is
bounded by exp

{−N
(
Ṽ
(
πk
)− V̂

(
πk
)− ε

)}
. A similar argument gives the same bound for the

third term in (3.4). �
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3.4. LDP for the invariant measure

Using the estimates (3.2) of the transition probabilities of the discrete-time Markov chain
ZN , we can study large deviations for the process μN in the stationary regime. Recall that ℘N

denotes the unique invariant probability measure of the process μN . Also recall that G(i) is the
set of all directed graphs g on L such that (a) every node other than i has exactly one outgoing
arrow and (b) there are no closed cycles in g. We state the following result.

Theorem 3.1. ([12, Theorem 2.2].) Assume (A1), (A2), and (B1). Then the sequence
of invariant measures {℘N}N≥1 satisfies the LDP on M1(Z) with good rate functions
given by

s(ξ ) = min
1≤i≤l

{W(i) + V(Ki, ξ )} − min
1≤j≤l

W(j), (3.5)

where

W(i) = min
g∈G(i)

∑
(m,n)∈g

Ṽ(m, n).

The form of the rate function s in Theorem 3.1 is also related to the form of the invariant
measure in the context of Markov chains on finite state spaces whose transition kernels are
of the form (3.2); see, for example, [15, Section 1.1]. Also, see [9] for an analogous result in
a boundary-driven symmetric simple exclusion process, which involves the study of the LDP
for the invariant measure in an infinite-dimensional setting. However, our focus is on sharp
estimates on the rate of convergence to the invariant measure, which is the subject of the next
section.

3.5. Convergence to the invariant measure

In this section, we prove our first main result on the time required for the convergence of
μN to its invariant measure.

Let i0 ∈ L be such that min
{
Ṽ(g) : g ∈ G(i0)

}= min
{
Ṽ(g) : g ∈ G(i), i ∈ L

}
. We anticipate

that Ki0 is one of the most stable ω-limit sets (possibly among others) for the dynamics (1.1).
This is because Theorem 3.1 tells us that the rate function that governs the LDP for {℘N}N≥1
vanishes on Ki0 . Hence, for a large but fixed N, over large time intervals, one expects that
there is positive probability (in the exponential scale) for the process μN to be in a small
neighbourhood of Ki0 .

Define

� :=
{

min
{
Ṽ(g) : g ∈ G({i}), i ∈ L

}− min
{
Ṽ(g) : g ∈ G({i, j}), i, j ∈ L, i �= j

}
if |L| ≥ 2,

0 if |L| = 1.
(3.6)

Since we are interested in the case when (1.1) has multiple ω-limit sets, we assume throughout
that � > 0. The motivation to define this constant � is the following. Since the process μN

spends most of the time near one of the compact sets Ki, we expect that it mixes well when the
discrete-time Markov chain ZN , with transition probabilities of the form exp

{−NṼ
(
Ki, Kj

)}
given in (3.2), mixes well. The mixing time of ZN is determined by the real part of

(
1 − λ̂N

2

)
,

where λ̂N
2 is the second-largest (in absolute value) eigenvalue of an l × l transition probability

matrix whose (i, j)th entry, for i �= j, is given by exp
{−NṼ

(
Ki, Kj

)}
; it turns out that this scales
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as exp{−N�} [20, Chapter 6, Theorem 7.3]. Thus, we expect that, when time is of the order
exp{N�}, the process μN mixes well.

Let PT (ν, ·) = Pν(μN(T) ∈ ·) denote the transition probability kernel associated with the
process μN . Note that we suppress the dependence on N for greater readability. We first show
a lower bound for the transition probability PT

(
ν1, Ki0

)
of reaching a small neighbourhood of

Ki0 when T is of the order exp{N(� − δ0)} for some δ0 > 0.

Theorem 3.2. Given ε > 0, there exist δ0 > 0, ρ > 0, and N0 ≥ 1 such that for all ρ1 ≤ ρ, N ≥
N0, ν ∈ MN

1 (Z), we have

PT0 (ν, γi0 ) ≥ exp{−Nε}, (3.7)

where T0 = exp{N(� − δ0)}. Furthermore, there exist ν0 ∈ M1(Z) and β > 0 such that for all
N ≥ N0 and ν ∈ [ν0]ρ1 ∩ MN

1 (Z),

PT0 (ν, γi0 ) ≤ exp{−Nβ}. (3.8)

Proof. We follow the steps in Hwang and Sheu [25, Part I, Theorem 2.3]. With ρ > 0 to be
chosen later, we first show that (3.7) holds for all ν ∈ γ ∩ MN

1 (Z). Towards this, let m be the
smallest integer such that Lm+1 is a singleton. For 0 ≤ k ≤ m, let πk

0 ∈ Lk be the k-cycle con-
taining i0. Let Vk = max

{
Ṽ
(
πk
)

: πk ⊂ πk+1
0 , πk �= πk

0

}
. Using [25, Lemma A.10, Appendix],

we have � = max{Vk : 0 ≤ k ≤ m}.
Fix j ∈ L and consider ν ∈ [Kj]ρ . Let πm

1 ∈ Lm be such that Kj ∈ πm
1 . If πm

1 �= πm
0 , then

we have πm
1 ⇒ πm

0 ; that is, there exist πm
2 , πm

3 , . . . , πm
n = πm

0 , n ≤ l, such that πm
1 → πm

2 →
πm

3 → · · · → πm
n = πm

0 . Therefore, with δ to be chosen later, by the strong Markov property,
we have

Pν

(
τ̂πm

0
≤ n exp

{
N(Vm − δ)

})
≥Eν

(
1{

τ̄πm
1

≤exp
{

N(Vm−δ)
}} · 1{

μN

(
τ̄πm

1

)
∈πm

2

}
×E

μN

(
τ̄πm

1

)(1{
τ̄πm

2
≤exp

{
N(Vm−δ)

}} · 1{
μN

(
τ̄πm

2

)
∈πm

3

}
· · · ×E

μN

(
τ̄πm

n−2

)(1{
τ̄πm

n−1
≤exp

{
N(Vm−δ)

}} · 1{
μN

(
τ̄πm

n−1

)
∈πm

0

})

· · ·
))

.

Since V
(
πm

i

)≤ Vm for all 1 ≤ i ≤ n, the above becomes

Pν

(
τ̂πm

0
≤ n exp{N(Vm − δ)}

)
≥Eν

(
1{

τ̄πm
1

≤exp
{

N
(

Ṽ(πm
1 )−δ

)}} · 1{
μN

(
τ̄πm

1

)
∈πm

2

}
×E

μN

(
τ̄πm

1

)(1{
τ̄πm

2
≤exp

{
N
(

Ṽ
(
πm

2

)
−δ
)}} · 1{

μN

(
τ̄πm

2

)
∈πm

3

}
· · · ×E

μN

(
τ̄πm

n−2

)(1{
τ̄πm

n−1
≤exp

{
N
(

Ṽ
(
πm

n−1

)
−δ
)}} · 1{

μN

(
τ̄πm

n−1

)
∈πm

0

})

· · ·
))

.
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By Lemma 3.8, there exist ρ > 0, δ > 0, and N0 ≥ 1 such that each of the above probabilities
is at least exp{−Nε/l} for sufficiently large N, i.e., we have

Pν

(
τ̂πm

0
≤ n exp

{
N(Vm − δ))

})≥ exp{−Nnε/l} ≥ exp{−Nε},
On the other hand, if Kj is such that Kj ∈ πm

0 , the above holds trivially. Therefore, there exist
δ1 > 0 and N1 ≥ 1 such that for all ν ∈ γ ∩ MN

1 (Z) and N ≥ N1, we have

Pν

(
τ̂πm

0
≤ exp{N(Vm − δ1)}

)
≥ exp{−Nε}.

We now use the above bound to show (3.7). Let T = exp{N(� − δ1)}, Tm = exp{N(Vm − δ1)},
and Tm−1 = exp{N(Vm−1 − δ1)}. Then, for any ν ∈ γ ∩ MN

1 (Z) and N ≥ N1, we have

Pν

(
μN(T) ∈ γi0

)≥Eν

(
1{

τ̂πm
0

≤Tm

} · 1{
μN

(
T−τ̂πm

0

)
∈γi0

})

=Eν

(
1{

τ̂πm
0

≤Tm

} ·E
μN

(
τ̂πm

0

)(1{
μN

(
T−τ̂πm

0

)
∈γi0

}))
≥ inf

ν′∈
[
πm

0

]
ρ
∩MN

1

(
Z
)

T−Tm≤t≤T

Pν′
(
μN(t) ∈ γi0

)
Pν

(
τ̂πm

0
≤ Tm

)

≥ inf
ν′∈
[
πm

0

]
ρ
∩MN

1 (Z)

T−Tm≤t≤T

Pν′
(
μN(t) ∈ γi0

)
exp
{−Nε

}
, (3.9)

where the second equality follows from the strong Markov property. To get a lower bound for
the above infimum, fix ν ∈ [πm

0

]
ρ

∩ MN
1 (Z) and T − Tm ≤ t ≤ T . Define the stopping time θ :=

inf
{
s > t − Tm−1 : μN(s) ∈ [πm

0

]
ρ

}
. Then, for a large T∗ (not depending on N) to be chosen

later, we have

Pν

(
μN(t) ∈ γi0

)
≥Eν

(
1{

θ≤t−Tm−1+T∗,τ̄πm
0

>T
} ·EμN (θ)

(
1{

μN (t−θ)∈γi0

})

≥ Pν

(
θ ≤ t − Tm−1 + T∗, τ̄πm

0
> T

)
inf

ν′∈
[
πm

0

]
ρ
∩MN

1

(
Z
)

Tm−1−T∗≤t≤Tm−1

Pν′
(
μN(t) ∈ γi0

)
. (3.10)

Note that

Pν

(
θ ≤ t − Tm−1 + T∗, τ̄πm

0
> T

)= Pν

(
τ̄πm

0
> T

)
− Pν

(
θ > t − Tm−1 + T∗, τ̄πm

0
> T

)
.

By Lemma 3.9, since � ≤ Ṽ
(
πm

0

)
, we have

Pν

(
τ̄πm

0
> T

)
≥ Pν

(
τ̄πm

0
> exp

{
N
(
Ṽ
(
πm

0

)− δ
)})→ 1

as N → ∞. For the second term, note that

Pν

(
θ > t − Tm−1 + T∗, τ̄πm

0
> T

)
= Pν

(
μN(s) /∈ [πm

0

]
ρ

for all t − Tm−1 ≤ s ≤ t − Tm−1 + T∗, τ̄πm
0

> T
)

= Pν

(
μN(s) /∈ γ for all t − Tm−1 ≤ s ≤ t − Tm−1 + T∗, τ̄πm

0
> T

)
≤ Pν

(
μN(s) /∈ γ for all t − Tm−1 ≤ s ≤ t − Tm−1 + T∗).
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The second equality follows since μN(s) /∈ [πm
0

]
ρ

and τ̄πm
0

> T implies that we have exited[
πm

0

]
ρ

and we have not yet entered a neighbourhood of any other attractor, which is the same
as saying μN(t) /∈ γ and τ̄πm

0
> T . By the Markov property, the above probability equals

Eν

(
E

μN

(
t−Tm−1

)(1{
μN (s)/∈γ for all s∈

[
t−Tm−1,t−Tm−1+T∗

]}))≤ sup
ν′∈F

Pν′
(
τF ≥ T∗),

where F = M1(Z) \ γ . By Lemma 3.3, T∗ can be chosen large enough (not depending on N)
that the above probability is at most 1/2. Therefore, (3.10) becomes

inf
ν∈
[
πm

0

]
ρ
∩MN

1 (Z)

T−Tm≤t≤T

Pν

(
μN(t) ∈ γi0

)≥ 1

2
inf

ν′∈
[
πm

0

]
ρ
∩MN

1 (Z)

Tm−1−T∗≤t≤Tm−1

Pν′
(
μN(t) ∈ γi0

)
,

and (3.9) becomes

Pν

(
μN(T) ∈ γi0

)≥ 1

2
exp{−Nε} inf

ν′∈
[
πm

0

]
ρ
∩MN

1 (Z)

Tm−1−T∗≤t≤Tm−1

Pν′
(
μN(t) ∈ γi0

)
,

for sufficiently large N and ν ∈ γ ∩ MN
1 (Z). Repeating the above argument m times, we see

that there exists N2 ≥ 1 such that for all ν ∈ γ and N ≥ N2, we have

Pν

(
μN(T) ∈ γi0

)≥(1

2

)m

exp{−Nmε} inf
ν′∈
[
π1

0

]
ρ
∩MN

1 (Z)

T0−T∗≤t≤T0

Pν′
(
μN(t) ∈ γi0

)

≥
(

1

2

)m

exp{−N(m + 1)ε} inf
ν′∈[K0]ρ∩MN

1 (Z)
T0−T∗≤t≤T0

Pν′
(
μN(t) ∈ γi0

)

≥
(

1

2

)m+1

exp{−N(m + 1)ε},

where T0 = exp{N(V0 − mδ)}. Thus, we conclude that there exist N3 ≥ 1, δ3 > 0, and ρ > 0
such that for all ν ∈ γ ∩ MN

1 (Z) and N ≥ N3, we have

Pν

(
μN(T) ∈ γi0

)≥ exp{−N(m + 3)ε},
where T = exp{N(� − δ3)}. This establishes (3.7) for all ν ∈ γ ∩ MN

1 (Z). For any
ν ∈ MN

1 (Z) \ γ , from Lemma 3.3, there exist T ′ large enough and N4 ≥ N3 such that
Pν

(
τM1(Z)\γ ≤ T ′)≥ 1

2 for all N ≥ N4. Therefore, we have

Pν

(
μN(T) ∈ γi0

)≥Eν

(
1{

τM1(Z)\γ ≤T ′
} ·EμN (τF)

(
1{

μN (T−T ′)∈γi0

}))

≥ 1

2
inf
ν′∈γ

Pν′
(
μN(T − T ′) ∈ γi0

)
≥ 1

2
exp{−N(m + 3)ε}.

Thus, we have established (3.7) for any ν ∈ MN
1 (Z).
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We now turn to (3.8). Since � = max{Vk, 0 ≤ k ≤ m}, there exists a k such that Vk = �.
From the definition of Vk, we see that there exists πk ∈ Lk such that

Ṽ
(
πk)= �, πk ⊂ πk+1

0 , and πk �= πk
0 ,

where πk+1
0 is the (k + 1)-cycle that contains Ki0 . Therefore, Lemma 3.9 implies that, for

some β > 0, for some δ4 < δ3 and an appropriately chosen ρ > 0, with T = exp{N(� − δ3)} =
exp
{
N
(
Ṽ
(
πk
)− δ3

)}
, we have

Pν

(
μN(T) ∈ γi0

)≤ Pν

(
τ̄πk ≤ T

)≤ exp{−Nβ},

for any ν ∈ [πk
]
ρ

∩ MN
1 (Z) and sufficiently large N. This completes the proof of the

theorem. �
The above theorem immediately gives a lower bound on PT (ν, ξ ) for any ξ in a small neigh-
bourhood of Ki0 , over time durations of order exp{N(� − δ)} for some δ > 0. Let us make this
precise.

Corollary 3.4. Under the conditions of Theorem 3.2, for all ν ∈ MN
1 (Z), ξ ∈ γi0 ∩ MN

1 (Z), and
N sufficiently large, we have

PT0 (ν, ξ ) ≥ exp{−2Nε}.

Proof. Given ε > 0, let ρ, N0, and T0 be as in the statement of Theorem 3.2. Choose t large
enough (not depending on N) and ρ′ < ρ so that for all ρ1 ≤ ρ′ we have St(ν1|ν2) ≤ ε/2 for all
ν1, ν2 ∈ γi0 . This is possible by the joint continuity of the rate function St(·|·) and the fact that
V(ν1, ν2) = 0 whenever ν1, ν2 ∈ Ki0 . Therefore, using the large deviation lower bound, there
exists N2 ≥ N1 such that

Pt(ν1, ν2) ≥ exp{−N(St(ν2|ν1) + ε/2)} ≥ exp{−Nε},

for all ν1, ν2 ∈ γi0 ∩ MN
1 (Z) and N ≥ N2. Therefore, by Theorem 3.2, for ν ∈ MN

1 (Z), ξ ∈ γi0 ∩
MN

1 (Z), and N ≥ N2, we have

PT0 (ν, ξ ) =
∑

ν2∈γi0∩MN
1 (Z)

PT0−t(ν1, ν2)Pt
(
ν2, ξ

)

≥ PT0−t
(
ν1, γi0

)
inf

ν2∈γi0∩MN
1 (Z)

Pt
(
ν2, ξ

)
≥ exp{−2Nε}.

�

3.5.1. Proofs of Theorem 1.1 and Theorem 1.2. We now prove our first main result
(Theorem 1.1) on the convergence of μN to the invariant measure and its converse Theorem 1.2.
Theorem 1.1 together with Theorem 1.2 shows that the constant � is sharp (in the exponential
scale) for the time required for μN to equilibrate.
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Define L̃0 := {i ∈ L : s(Ki) = 0}; i.e, L̃0 denotes the set of minimisers of the rate func-
tion s (see (3.5)). Let B(M1(Z)) denote the space of bounded Borel-measurable functions on
M1(Z).

Proof of Theorem 1.1. We follow the steps in Hwang and Sheu [25, Part I, Theorem 2.5].
Let ε > 0, and let T0, δ0, ρ, ρ1, and N0 ≥ 1 be as in the statement of Theorem 3.2. Note that,
for any ν ∈ MN

1 (Z), ξ /∈ [L̃0
]
ρ1

and for some fixed t > 0,

PT0 (ν, ξ ) =
∑

ν′∈
[

Ki0

] PT0−t(ν, ν′)Pt(ν
′, ξ )

≥ exp{−2Nε} inf
ν′∈
[

Ki0

] Pt(ν
′, ξ )

≥ exp{−2Nε} exp

{
−N sup

ν′∈
[

Ki0

] St
(
ξ |ν′)},

where the first inequality follows from Corollary 3.4 and the second from the uniform LDP
(Corollary 2.1). Hence, we can find a function U : M1(Z) → [0, ∞) such that U(ξ ) = 0 for
ξ ∈ [L̃0

]
ρ1

and

PT0 (ν, ξ ) ≥ cN exp{−NU(ξ )} (3.11)

holds for all ν ∈ MN
1 (Z), ξ /∈ [L̃0

]
ρ1

and sufficiently large N; here cN is such that

πN(ξ ) = cN exp{−NU(ξ )}

is a probability measure on MN
1 (Z). Define QT0 (ν, ·) := PT0 (ν, ·)/πN(·). Note that cN → 0

exponentially fast as N → ∞. Indeed, since U(ξ ) = 0 for all ξ ∈ [L̃0
]
ρ1

, each of these points

yield πN(ξ ) = cN . Since the number of points in
[
L̃0
]
ρ1

∩ MN
1 (Z) is exponential in N and since

πN is a probability measure, we see that cN must decay exponentially fast in N. We have, for
any ν1, ν2 ∈ MN

1 (Z) and sufficiently large N,

Eν1 ( f (μN(T0))) −Eν2 ( f (μN(T0)))

=
∑

ξ∈MN
1 (Z)

PT0 (ν1, ξ )f (ξ ) −
∑

ξ∈MN
1 (Z)

PT0 (ν2, ξ )f (ξ )

=
∑

ξ∈MN
1 (Z)

QT0 (ν1, ξ )f (ξ )πN(ξ ) −
∑

ξ∈MN
1 (Z)

QT0 (ν2, ξ )f (ξ )πN(ξ )

=
∑

ξ∈MN
1 (Z)

(QT0 (ν1, ξ ) − exp{−2Nε})f (ξ )πN(ξ )

−
∑

ξ∈MN
1 (Z)

(QT0 (ν2, ξ ) − exp{−2Nε})f (ξ )πN(ξ )

≤ (1 − exp{−2Nε})
(

sup
ξ

f (ξ ) − inf
ξ

f (ξ )

)
,
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where the last inequality follows from (3.11) and the fact that QT0 (·, ·) ≥ 1. Therefore, we have
that

sup
ν1,ν2

|Eν1 ( f (μN(T0))) −Eν2 ( f (μN(T0)))| ≤ (1 − exp{−2Nε})‖f ‖∞.

Continuing this procedure k times, and by using the Markov property, we get

sup
ν1,ν2

|Eν1 ( f (μN(kT0))) −Eν2 ( f (μN(kT0)))| ≤ (1 − exp{−2Nε})k‖f ‖∞,

and hence we have

sup
ν

|Eν( f (μN(kT0))) − 〈 f , ℘N〉| ≤ (1 − exp{−2Nε})k‖f ‖∞.

Choose k = exp{N(δ0 + δ)}; then we have kT0 = exp{N(� + δ)}, and the above becomes

sup
ν

|Eν( f (μN(kT0))) − 〈 f , ℘N〉| ≤ exp{− exp(N(−2ε + δ0 + δ))}.

We can choose ε small enough so that the quantity −2ε + δ > 0, and hence for some ε′ > 0,
we have

sup
ν

|Eν( f (μN(T))) − 〈 f , ℘N〉| ≤ exp{− exp(Nε′)},

for sufficiently large N, where T = exp{N(� + δ)}. This establishes the result. �
Proof of Theorem 1.2. This is a direct consequence of (3.8), established in

Theorem 3.2. �

4. Asymptotics of the second-largest eigenvalue for reversible processes

In this section, our goal is to understand the rate of convergence of μN to its invari-
ant measure for a fixed N. For this purpose, we shall assume that the Markov process μN

is reversible. That is, the operator LN is self-adjoint in L2(℘N) and it admits a spectral
expansion; let 0 = λN

1 > −λN
2 ≥ −λN

3 . . . denote its eigenvalues in decreasing order, and let
uN

1 ≡ 1, uN
2 , uN

3 , . . . denote their corresponding eigenfunctions. Without loss of generality, we
assume that the eigenfunctions are orthonormal, i.e.,

(
uN

i , uN
i

)= 1 for each i and
(
uN

i , uN
j

)= 0

for each i �= j, where (·, ·) denotes the inner product in L2(℘N). The spectral expansion [5,
Section 1.7.2] enables us to write, for any f ∈ B(M1(Z)),

Eν f (μN(t)) = 〈 f , ℘N〉 +
∑
k≥2

e−tλN
k
(
f , uN

k

)
uN

k (ν). (4.1)

Therefore, the rate of convergence of Eν f (μN(t)) to its stationary value 〈 f , ℘N〉 is determined
by the leading term in the above sum, which is the second-largest eigenvalue −λN

2 . Hence, to
understand the convergence of μN to its invariant measure, we study the asymptotics of λN

2 .
We first need the following lemma, which estimates the probability that the process μN is

outside a small neighbourhood of the set ∪l
i=1Ki.

Lemma 4.1. Fix ρ1 > 0 and let B be the ρ1-neighbourhood of ∪i∈LKi. Given ε > 0, there exist
δ > 0 and N0 ≥ 1 such that for each ν ∈ MN

1 (Z) and N ≥ N0, we have

Pν

(
μN(T) ∈ MN

1 (Z) \ B
)≤ exp{−Nδ},

where T = exp{N(� + ε)}.
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This result can be proved using Theorem 1.1, which deals with the convergence to the invariant
measure, and Theorem 3.4, which addresses large deviations of the invariant measure {℘N}N≥1.
Indeed, from Theorem 3.1, since the function s in (3.5) is strictly positive outside ∪l

i=1Ki, the
probability of the complement of a small neighbourhood of ∪l

i=1Ki under ℘N decays expo-
nentially in N. But when T is of the order exp{N(� + ε)}, from Theorem 1.1, the law of the
random variable μN(T) is not far from ℘N . Therefore, the probability that μN(T) lies outside a
small neighbourhood of ∪l

i=1Ki decays exponentially in N.
We are now ready to prove our next main result (Theorem 1.3) on the asymptotics of the

modulus of the second-largest eigenvalue
(
i.e., λN

2

)
.

Proof of Theorem 1.3. Lower bound: Suppose that there exists a subsequence {Nk}k≥1 such
that

log λ
Nk
2 < −Nk(� + ε) (4.2)

for some ε > 0. We will show that this contradicts
∫ (

uNk
2 (ν)

)2
℘N(dν) = 1 for sufficiently large

k. Fix ρ > 0 and define B := ∪l
i=1[Ki]ρ . Then, using the lower semicontinuity of the rate func-

tion St(·|·) and Corollary 2.1 on uniform LDP, we see that for sufficiently large t, there exists
δ1 > 0 such that inf{St(ξ |ν) : ξ, ν ∈ Bc} = δ1 > 0. Therefore, for any ν ∈ Bc ∩ MN

1 (Z) and any
δ2 > 0, there exists N0 ≥ 1 such that for all N ≥ N0,

Pν(μN(t) = ν) ≤ exp{−N(St(ν|ν) − δ2)} ≤ exp{−N(δ1 + δ2)}.
On the other hand, (4.1) implies that

Pν(μN(t) = ν) =Eν(1{ν}(μN(t)))

≥ e−λN
2 t(uN

2 (ν)
)2

℘N(ν),

so that ∫
Bc

∣∣uN
2

∣∣2℘N(dν) ≤ exp{−N(δ1 + δ2)} (4.3)

for all N ≥ N0. To bound the integral over B, by Theorem 1.1, with T = exp{N(� + ε/2)}, there
exist δ3 > 0 and N1 ≥ N0 such that for all N ≥ N1,

|Eν f (μN(T)) − 〈 f , ℘N〉| ≤ ‖ f ‖∞ exp{− exp(Nδ3)},
for any f ∈ B(M1(Z)). On the other hand, from (4.1), for any ν ∈ B ∩ MN

1 (Z), with f = 1{ν}, we
have

|Eν f (μN(T)) − 〈 f , ℘N〉| =
∣∣∣∣∑

i≥2

exp
{−λN

i T
}(

f , uN
i (ν)

)
uN

i (ν)

∣∣∣∣
≥ exp

{−λN
2 T
}(

uN
2 (ν)

)2
℘N(ν),

so that, by our assumption (4.2), there exists a k0 ≥ 1 such that

uNk
2 (ν))2℘Nk (ν) ≤ exp

{
λ

Nk
2 T
}

exp{− exp(Nkδ3)}
≤ exp{2 exp(−Nk(� + ε)) exp(Nk(� + ε/2))} exp{−Nkδ3}
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for all k ≥ k0. Since
∣∣MNk

1 (Z)
∣∣≤ (Nk + 1)|Z| for all k, the above implies that, for some

δ4 > 0, ∫
B

(
uNk

2 (ν)
)2

℘Nk (dν) ≤ exp{−Nkδ4} (4.4)

for all k ≥ k0. Therefore, (4.3) and (4.4) imply that, for some δ > 0,∫
M1(Z)

(
uNk

2 (ν)
)2

℘Nk (dν) ≤ exp{−Nkδ}

for all sufficiently large k, which is a contradiction to
∫ (

uNk
2 (ν)

)2
℘Nk (dν) = 1 for all

sufficiently large k.
Upper bound: Suppose that there exists a subsequence {Nk}k≥1 such that log λN

2 >

Nk(−� + ε) for some ε > 0. Let ν0, δ0 < ε/2, ρ, N0 be as in Theorem 3.2. Then, with
f (ν) = 1{[

Ki0

]
ρ/2

}(ν) and T = exp{N(� − δ0/2)}, (3.8) implies that

Eν f (μN(T)) = Pν

(
μN(T) ∈ [Ki0

]
ρ/2

)≤ exp{−Nβ}

for all N ≥ N0 and ν ∈ [ν0]ρ/2 ∩ MN
1 (Z). Also, by Theorem 3.1, for any δ > 0, there exists

N1 ≥ N0 such that for all N ≥ N1, we have

〈 f , ℘N〉 = ℘N
([

Ki0

]
ρ/2

)≥ exp{−Nδ}.

This is possible since inf
ξ∈
[

Ki0

]
ρ/2

s(ξ ) = 0. Therefore, for all N ≥ N1,

∫
M1(Z)

|Eν( f (μN(T))) − 〈 f , ℘N〉|2℘N(dν)

≥
∫

[ν0]ρ/2

|Eν( f (μN(T))) − 〈 f , ℘N〉|2 ℘N(dν)

≥ ℘N([ν0]ρ/2)(exp{−Nβ} − exp{−Nδ})
≥ ℘N([ν0]ρ/2) exp{−Nδ1}, for some δ1 > 0

≥ exp{−Nδ2}, for some δ2 > 0,

where the last inequality follows by Theorem 3.1. On the other hand, for any function f with∫ |f |2d℘N ≤ 1, we have∫
M1(Z)

|Eν( f (μN(T))) − 〈 f , ℘N〉|2℘N(dν)

=
∫

M1(Z)

∑
k≥2

e−2λN
k T(f , uN

k

)2
uN

k (ν)2℘N(dν)

≤ exp
{−2λN

2 T
} ∫

M1(Z)
|f |2d℘N

≤ exp
{−2λN

2 T
}
.
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Therefore, we have exp
{−2λN

2 T
}≥ exp{−Nδ2} whenever N ≥ N1. By our assumption, we see

that

exp{−2 exp(−Nk(� − ε)) exp(Nk(� − δ0))} ≥ exp{−Nkδ1}
for sufficiently large k, which is a contradiction since δ0 < ε/2. �

Using the above theorem, we see that if � > 0, then as N becomes large, it takes longer for
the process μN to be close to its invariant measure. This means in particular that metastable
states reduce the rates of convergence of μN to its invariant measure. On the other hand, if
there is a unique global attractor of the limiting McKean–Vlasov equation (1.1), then we see
that � = 0, and the rate of convergence of μN to its invariant measure does not suffer from
such a slowing-down phenomenon.

Note that the spectral expansion in (4.1) is crucial in the proof of Theorem 1.3, to enable
the use of the results on the large-time behaviour of μN established in Section 3 to obtain the
asymptotics of λN

2 . The main purpose of Theorem 1.3 is to demonstrate that, in the reversible
case, the asymptotics of λN

2 can easily be obtained as an application of the study of the large-
time behaviour of μN . Even in the non-reversible case, one can obtain asymptotics of the
real part of λN

2 via other approaches; see, for example, [47], where the author obtains the
asymptotics of the real part of the second-largest eigenvalue of the generator corresponding
to a small-noise diffusion process by examining the eigenvalues of a discrete-time chain (with
transition probabilities of the form appearing in (3.2)) and transferring them to the operator.
Furthermore, the asymptotics of all the eigenvalues of an l × l transition probability matrix
whose (i, j)th entry, for i �= j, is given by exp

{−NṼ
(
Ki, Kj

)}
can also be obtained; the real

part of
(
1 − λ̂N

k

)
(where λ̂N

k is the kth eigenvalue of the matrix, 2 ≤ k ≤ l) decays exponentially
in N, where the exponent is given by a quantity analogous to � in (3.6) in which the first
minimum is taken over all graphs in G(W) with |W| = k − 1 and the second minimum is taken
over all graphs in G(W) with |W| = k, see Freidlin and Wentzell [20, Chapter 6, Theorem 7.3].
However, it is not clear how to transfer these asymptotics to the eigenvalues of LN using the
large-time behaviour of μN , a question that we leave for the future. This question is also related
to the behaviour of μN over times of the order of the inverse of these eigenvalues. For reversible
Markov chains with a small parameter, such questions have been studied by Miclo [34, 35].
In particular, it would be interesting to investigate the asymptotics of λN

3 , since the rate of
convergence of μN to ℘N depends on whether λN

3 decays as exp{−N�} or λN
3 � exp{−N�}.

Example 4.1. We provide a simplified Curie–Weiss model of magnetisation for which LN is
reversible with respect to ℘N for all N ≥ 1 [13]. Let Z = {−1, +1}. The states represent the
direction of magnetisation of the particles. For each N ≥ 1, consider the following probability
measure on ZN :

πN
(
zN)= 1

CN
exp

⎧⎨
⎩N

(
1

N

N∑
n=1

zn

)2
⎫⎬
⎭ , zN = (z1, z2, . . . , zN) ∈ZN, (4.5)

where CN is a normalisation constant. Given ξ ∈ M1(Z), define the total magnetisation by
ξtot = ξ (+1) − ξ (−1). Define the transition rates

λz,(−z)(ξ ) = exp{−2zξtot}, z ∈Z, ξ ∈ M1(Z).

It is straightforward to verify that the Markov process
(
XN

1 , . . . , XN
N

)
that describes the joint

evolution of the states of all the particles is reversible with respect to its invariant measure πN
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in (4.5). That is, for every zN, z̃N ∈ZN that differ on the nth component, we have the following(
recall that zN = 1

N

∑N
n=1 δzn

)
:

πN
(
zN)λzn,(−zn)

(
zN
)= πN

(
z̃N)λ(−zn),zn

(
z̃N
)
. (4.6)

From the reversibility of
(
XN

1 , . . . , XN
N

)
, noting that ℘N(ξ ) is the sum of πN

(
zN
)

over all zN

such that zN = ξ , it is straightforward to check that μN is reversible. For completeness, we
show the reversibility of μN by checking the detailed balance condition. Towards this, we first
note that for any ξ, ξ̃ ∈ MN

1 (Z) such that ξ (z) = ξ̃ (z) + 1/N for some z ∈Z (which ensures that
ξ (z) > 0, and hence ξ̃ (−z) > 0),

ξ (z) × (number of zN ∈ZN such that zN = ξ
)

= ξ̃ (−z) × (number of zN ∈ZN such that zN = ξ̃
)
. (4.7)

Let zN
ξ ∈ZN

(
resp. z̃N

ξ̃
∈ZN

)
be such that zN = ξ

(
resp. z̃N = ξ̃

)
. Noting that π

(
zN
)

depends

only on zN , for any z ∈Z with ξ (z) > 0, we have

℘N(ξ )Nξ (z)λz,(−z)(ξ ) = πN
(
zN
ξ

)(
number of zN ∈ZN such that zN = ξ

)
Nξ (z)λz,(−z)(ξ )

= πN
(
zN
ξ

)(
number of zN ∈ZN such that zN = ξ̃

)
Nξ̃ (−z)λz,(−z)(ξ )

= πN
(
zN
ξ̃

)(
number of zN ∈ZN such that zN = ξ̃

)
Nξ̃ (−z)λ(−z),z

(
ξ̃
)

= ℘N
(
ξ̃
)
Nξ̃ (−z)λ(−z),z

(
ξ̃
)
,

where we have used (4.7) in the second equality and (4.6) in the third equality. It follows that
μN is reversible.

Remark 4.1. Another situation where μN is reversible with respect to ℘N is in the non-
interacting case (i.e., when, for each (z, z′) ∈ E , λz,z′ (·) is a constant function, which we denote
by λz,z′ ), where the Markov process on Z with generator

f 
→
∑

z′:(z,z′)∈E
( f (z′) − f (z))λz,z′, z ∈Z,

is reversible with respect to its invariant measure (i.e., when the Markov process correspond-
ing to a single particle’s evolution on Z is reversible with respect to its invariant measure).
This results in a reversible empirical measure process μN . However, the authors are not aware
of a general condition (in terms of the transition rates λz,z′ (·), (z, z′) ∈ E) that characterises
reversibility of μN .

5. Convergence to a global minimum via controlled addition of particles

In this section, our goal is to increase the number of particles N over time so as to obtain,
with high probability, convergence of the empirical measure process to a global minimum of
the rate function s that governs the LDP for the sequence of invariant measure {℘N}N≥1.

Fix c > 0. Let N0 = min{n ∈N : exp{nc} − 2 ≥ 0}, tN0 = 0, and for each N > N0, let tN =
exp{Nc} − 2. For each N ≥ N0 define the generator LN

t acting on bounded measurable functions
f on M1(Z) by

LN
t f (ξ ) :=

∑
(z,z′)∈E

Ntξ (z)λz,z′(ξ )

[
f

(
ξ + δz′

Nt
− δz

Nt

)
− f (ξ )

]
, t ∈ [tN, tN+1),
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where Nt = N for t ∈ [tN, tN+1). Let z0 ∈Z be a fixed state and let ν ∈ MN0
1 (Z). We say that

a probability measure P0,ν on D([0, ∞), M1(Z)) is a solution to the martingale problem for{
LN
}

N≥N0
with initial condition ν if P0,ν(μ̄ : μ̄(0) = ν) = 1, for each N ≥ N0, the restriction

of P0,ν on D([tN, tN+1), MN
1 (Z)) is a solution to the D([tN, tN+1), MN

1 (Z))-valued martingale
problem for LN , and

P0,ν

(
μ̄ : μ̄(tN+1) = N

1 + N
μ̄
(
t−N+1

)+ 1

N + 1
δz0

)
= 1.

Again, by the boundedness assumption on transition rates (A2), for each ν ∈ MN0
1 (Z), there

exists a unique probability measure P0,ν that solves the martingale problem for
{
LN
}

N≥N0

with initial condition ν. Let μ̄ be the process on D([0, ∞), M1(Z)) whose law is P0,ν . To
describe the process in words, we start with N0 particles and follow the mean-field interaction
described in Section 1, except that at each time instant tN , N > N0, we add a new particle whose
state is set to z0. Similarly, for t > 0 and ν ∈M�log(t+2)�

1 , let Pt,ν denote the law of the process
(μ̄(t′), t′ ≥ t) with μ̄(t) = ν.

We anticipate that if c is small, then Nt is so large that the fluid limit kicks in too quickly over
time and the process μ̄ converges (over time) to a local minimum of s with positive probability
depending on the initial condition μ̄(0). When c is sufficiently large, we anticipate that there is
enough time for exploration and therefore we will converge to a global minimum of s. Recall
that the set of global minimisers of s is denoted by L̃0. Our interest in this section is in finding
a constant c∗ such that for all c > c∗ and ν ∈ MN0

1 (Z), we have

P0,ν

(
μ̄(t) lies in a neighbourhood of L̃0

)→ 1 (5.1)

as t → ∞.
We use the results in the previous sections to identify the constant c∗. Since Nt → ∞

as t → ∞, for a fixed T > 0 and large enough t, the large deviation properties of the pro-
cess (μ̄(s), t ≤ s ≤ t + T) from the limiting dynamics (1.1) starting at an arbitrary μ̄(t) can be
obtained similarly to the LDP of the process μN studied in Theorem 2.1 and Corollary 2.1.
Therefore, the results in the previous sections on the large-time behaviour for the process
(μN(t), t ≥ 0) are also valid for (μ̄(t), t ≥ 0) when the t is large enough; we make these precise
now.

Lemma 5.1. (See Lemma 3.8.) Let πk
1 and πk

2 be k-cycles and suppose that πk
1 → πk

2 and
Ṽ
(
πk

1

)
/c < 1. Then, given ε > 0, there exist δ > 0 and ρ > 0 such that for all ρ1 < ρ, there is

t∗ > 0 such that

Pt,ν

(
τ̄πk

1
≤ t + t(Ṽ

(
πk

1

)
−δ)/c

, μ̄
(
τ̄πk

1

) ∈ γπk
2

)
≥ t−ε/c

holds uniformly for all ν ∈ [πk
1

]
ρ1

∩ MNt
1 (Z) and t ≥ t∗.

Remark 5.1. The condition Ṽ
(
πk

1

)
/c < 1 in the above lemma ensures that during the time

duration
[
t, tṼ

(
πk

1

)
/c
]
, for large enough t, the number of particles does not change, so that

Lemma 3.8 for the process μN is applicable for the process μ̄.
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Lemma 5.2. (See Lemma 3.9.) Let πk be a k-cycle and suppose that Ṽ
(
πk
)
/c < 1. Then, given

δ > 0 such that
(
Ṽ
(
πk
)+ δ

)
/c < 1, there exist ε > 0 and ρ > 0 such that for all ρ1 < ρ, there

is t∗ > 0 such that

Pt,ν

(
τ̄πk < t + t

(
Ṽ
(
πk
)
−δ
)
/c
)

≤ t−ε/c and

Pt,ν

(
τ̄πk > t + t

(
Ṽ
(
πk
)
+δ
)
/c
)

≤ t−ε/c

hold uniformly for all ν ∈ [πk
]
ρ1

∩ MNt
1 (Z) and t ≥ t∗.

Lemma 5.3. (See Lemma 3.10.) Let πk be a k-cycle and suppose that V̂
(
πk
)
/c < 1. Given

ε > 0, there exist δ ∈ (0, c − V̂
(
πk
))

and ρ > 0 such that for all ρ1 ≤ ρ, there is t∗ > 0 such
that

Pt,ν

(
τ̄πk ≤ t + t

(
V̂
(
πk
)
+δ
)
/c
)

≤ t−(Ṽ
(
πk
)
−V̂
(
πk
)
−ε)/c

holds uniformly for all ν ∈ [πk
]
ρ1

∩ MNt
1 (Z) and t ≥ t∗.

Recall the definition of the sets L and C from Section 3.

Lemma 5.4. (See Lemma 3.3.) Given ρ0 > 0 and ρ1 < ρ0 and their associated sets L and C,
given v > 0, there exist T∗ > 0 and t∗ > 0 such that

Pt,ν
(
τ̂L ≥ t + T∗)≤ t−v/c

holds uniformly for all ν ∈ C ∩ MNt
1 (Z) and t ≥ t∗.

To answer the question on the convergence of μ̄ to a global minimum of s, we define the
following quantities, analogously to what is done in Hwang and Sheu [25]. Let m be such that
Lm+1 is a singleton

(
denote it by

{
πm+1

})
. Define

Am := {
πm ∈ Lm : Ṽ(πm) = V̂

(
πm+1)}.

Inductively define, for each πk+1 ∈ Lk+1,

Ak
(
πk+1) := {

πk ∈ πk+1 : Ṽ
(
πk)= V̂

(
πk+1)},

and for each k ≥ 1, define

Ak :=
⋃

πk+1∈Ak+1

Ak
(
πk+1).

Also, for each πk ∈ Lk, define

ck−1
(
πk) :=

{
0 if

{
πk−1 ∈ πk : πk−1 /∈ Ak−1

(
πk
)}= ∅,

max
{
Ṽ
(
πk−1

)
: πk−1 /∈ Ak−1

(
πk
)
, πk−1 ∈ πk

}
otherwise,
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π3

π2
1 π2

2

π1
1 π1

2 π1
3

π1
4

A2

c2(π3)

A1(π2
1) A1(π2

2)

A0(π1
1)

A0(π1
2) A0(π1

3) A0(π1
4)

c1(π2
1) c1(π2

2)

c0(π1
2) c0(π1

3) c0(π1
4)

FIGURE 1. An example of the hierarchy of cycles with |L| = 9 and m = 2 that illustrates the above defi-
nitions. There are four 1-cycles and two 2-cycles. The nodes in the bottom row represent the elements of
L, and the nodes above it represent the hierarchy of cycles. Dashed and dotted lines indicate the (k − 1)-
cycles belonging to a k-cycle. Thick lines indicate the (k − 1)-cycles that attain maxπk−1∈πk Ṽ

(
πk−1

)
for

a k-cycle πk. Circles indicate the sets Ak
(
πk+1

)
. Dashed lines indicate the cycle πk−1 /∈ Ak−1

(
πk
)

that

attains the maximum in the second line in the definition of ck−1
(
πk
)
; c0

(
π1

1

)
= 0 (which is not indicated

in the figure), and all other ck−1
(
πk
)

are positive.

and for each k ≥ 1, define

ck−1 := max
{
ck−1

(
πk), : πk ∈ Ak

}
.

Finally, define

c∗ := max{ck, 0 ≤ k ≤ m}.

Figure 1 illustrates these definitions. Similarly to [25, Lemma A.11, Appendix], we can show
that A0 = L̃0, the set of minimisers of the rate function s that governs the LDP for the invariant
measure {℘N}N≥1. We now prove Theorem 1.4 on the convergence of μ̄ to the set of global
minimisers.

Proof of Theorem 1.4. It suffices to show that, for any δ > 0 with (c∗ + δ)/c < 1, there exist
ε > 0, ρ1 > 0, and t∗ > 0 such that

Pt,ν

(
μ̄
(
t + t

(
c∗+δ

)
/c) ∈ [L̃0

]
ρ1

)
≥ 1 − t−ε/c

for all t > t∗ and ν ∈ MNt
1 (Z). Define the stopping time

θ := inf
{
s > t : μ̄(s) ∈ [L]ρ1

}
.

By Lemma 5.4, for any M > 0, there exists T∗ > 0 such that for all ν ∈ MN0
1 (Z) and large

enough t, we have

Pt,ν(θ > t + T∗) ≤ t−M/c.
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By the strong Markov property, we have

Pt,ν

(
μ̄
(
t + t(c

∗+δ)/c) ∈ [L̃0
]
ρ1

)
≥Et,ν

(
1{

θ≤t+T∗
} ·Eθ,μ̄(θ)

(
1{

μ̄(t+t(c∗+δ)/c)∈
[

L̃0

]
ρ1

}))

≥ inf
t≤t1≤t+T∗
ν1∈[L]ρ1

Pt1,ν1

(
μ̄
(
t + t(c

∗+δ)/c) ∈ [L̃0
]
ρ1

)(
1 − t−M/c). (5.2)

To bound the first term above, fix a t1 such that t ≤ t1 ≤ t + T∗ and ν1 ∈ [L]ρ1 . Define the
stopping time θm := inf{t > t1 : μ̄(t) ∈ [Am]ρ1}. We have

Pt1,ν1

(
μ̄
(
t + t(c

∗+δ)/c) ∈ [L̃0
]
ρ1

)

≥Et1,ν1

(
1{θm<t+t(c∗+δ/2)/c} ·Eθm,μ̄(θm)

(
1{

μ̄(t+t(c∗+δ)/c)∈
[

L̃0

]
ρ1

}))

≥ inf
t≤t2≤t+t(c∗+δ/2)/c,ν2∈[Am]ρ1

Pt2,ν2

(
μ̄
(
t + t(c

∗+δ)/c) ∈ [L̃0
]
ρ1

)

× Pt1,ν1

(
θm ≤ t + t(c

∗+δ/2)/c). (5.3)

We first bound the second term Pt1,ν1

(
θm ≤ t + t(c

∗+δ/2)/c
)
. Note that, by Lemma 5.1, for any

M1 > 0, there exists δ1 > 0 such that

Pt1,ν1

(
θm > t1 + t(cm−δ1)/c

1

)≤ 1 − t−M1/c
1

for sufficiently large t. Let T1 = t1 + t(cm−δ1)/c
1 , and define the stopping time θ̂ := inf{t >

T1 : μ̄(t) ∈ [L]ρ1}. Again, by Lemma 5.4, there exists a T∗ large enough so that PT1,ν(θ̂ >

T1 + T∗) ≤ T−M/c
1 for all ν ∈ M

NT1
1 (Z). Therefore, using the strong Markov property, we have

Pt1,ν1

(
θm > t + t(c

∗+δ/2)/c)
≤Et1,ν1

(
1{θm≥θ̂ ,θ̂<T1+T∗} ·E

θ̂ ,μ̄(θ̂)

(
1{

θm>t+t(c∗+δ/2)/c
}))+ Pt1,ν1

(
θ̂ > T1 + T∗)

≤ Pt1,ν1 (θm > T1) sup
T1≤t≤T1+T∗

ν∈[L]ρ1

Pt,ν
(
θm > t + t(c

∗+δ/2)/c)+ t−M/c
1

≤
(

1 − t−M1/c
1

)
sup

T1≤t≤T1+T∗
ν∈[L]ρ1

Pt,ν
(
θm > t + t(c

∗+δ/2)/c)+ t−M/c
1 . (5.4)

We now focus on Pt,ν
(
θm > t + t(c

∗+δ/2)/c
)

for a fixed t ∈ [T1, T1 + T∗] and ν ∈ [L]ρ1 , and

repeat the above steps; this will introduce a multiplication factor of
(
1 − T−M1/c

1

)
along with

sup
T2≤t≤T2+T∗

ν∈[L]ρ1

Pt,ν
(
θm > t + t(c

∗+δ/2)/c),
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where T2 = T1 + T (cm−δ1)/c
1 , in the first term in (5.4), and an addition of t−M/c

1 in the second

term. Therefore, repeating the above steps r ∼ tδ/2c
1 times, we get

Pt1,ν1

(
θm > t + t(c

∗+δ/2)/c)≤ r∏
n=0

(
1 − T∗−M1/c

n

)+ rt−M/c
1 ,

where T∗
0 = t1, and

T∗
n+1 = T∗

n + T∗(cm−δ1)/c
n + T∗.

Note that

r∏
n=0

(
1 − T∗−M1/c

n

)≤ exp

{
−

r∑
n=0

T∗−M1/c
n

}

= exp

{
−

r∑
n=0

T∗−M1/c−(cm−δ1)/c
n (T∗

n+1 − T∗
n )

}

≤ exp

{
−
∫ T∗

r

T∗
0

u−(M1/c)−(cm−δ1)/cdu

}

= exp
{
−
(

T∗1−(cm+M1−δ1)/c
r − t1−(cm+M1−δ1)/c

1

)}
. (5.5)

Since Tn ≥ t1 for all n ≥ 1, we see that T∗
r ≥ t1 + rt(cm−δ1)/c

1 ∼ t1 + t(cm−δ1+δ/2)/c
1 . Therefore,

−
(

T∗1−(cm+M1−δ1)/c
r − t1−(cm+M1−δ1)/c

1

)
≤ −

((
t1 + t(cm−δ1+δ/2)/c

1

)1−(cm+M1−δ1)/c − t1−(cm+M1−δ1)/c
1

)
≤ −

(
t1−(cm+M1−δ1)/c
1

(
1 + t(cm−δ1+δ/2)/c−1

1

)1−(cm+M1−δ1)/c − 1

)

≤ −c′(t1−(cm+M1−δ1)/c
1 t(cm−δ1+δ/2)/c−1

1

)
= −c′t(δ/2−M1)/c

1 ,

for some constant c′ > 0 and large enough t1. Hence, (5.5) becomes

r∏
n=0

(
1 − T∗−M1/c

n

)≤ exp
{
−c′t(δ/2−M1)/c

1

}
.

We choose M1 = δ/4; the above and (5.4) then imply

Pt1,ν1

(
θm > t + t(c

∗+δ/2)/c)≤ exp
{
−c′tδ/4c

1

}
+ t−(M−δ/2)/c

1 ,

and this implies that, for any M′ > 0,

Pt1,ν1

(
θm > t + t(c

∗+δ/2)/c)≤ t−M′/c (5.6)

for sufficiently large t, t ≤ t1 ≤ t + T∗, and for all ν ∈ [L]ρ1 .
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We now bound the first term in (5.3), Pt2,ν2

(
μ̄
(
t + t(c

∗+δ)/c
) ∈ [L̃0

]
ρ1

)
where t ≤ t2 ≤

t + t(c
∗+δ/2)/c and ν2 ∈ [Am]ρ1 . Let πm

0 ∈ Am be the m-cycle such that ν2 ∈ [πm
0

]
ρ1

. Define the
following quantities:

t̃0 := t + t(c
∗+δ)/c − t(cm−1

(
πm

0

)
+δ)/c

, and

t̃1 := t + t(c
∗+δ)/c − t(cm−1

(
πm

0

)
+δ/2)/c.

Define the stopping time θ := inf{t > t̃0 : μ̄(t) ∈ [πm
0

]
ρ1

}, if c∗ > cm−1
(
πm

0

)
, and θ = t2 other-

wise. By the strong Markov property,

Pt2,ν2

(
μ̄
(
t + t(c

∗+δ)/c) ∈ [L̃0
]
ρ1

)

≥Et2,ν2

(
1{θ≤t̃1} ·Eθ,μ̄(θ)

(
1{

μ̄
(

t+t(c∗+δ)/c
)
∈
[

L̃0

]
ρ1

}))

≥ Pt2,ν2

(
θ ≤ t̃1

)
inf

t̃0≤t3≤t̃1,ν3∈
[
πm

0

]
ρ1

Pt3,ν3

(
μ̄
(
t + t(c

∗+δ)/c) ∈ [L̃0
]
ρ1

)
. (5.7)

We first estimate Pt2,ν2 (θ ≤ t̃1) when c∗ > cm−1(πm
0 ) (if this is not the case, then by definition

of θ , we have Pt2,ν2 (θ ≤ t̃1) = 1). Note that

Pt2,ν2

(
θ > t̃1

)= Pt2,ν2

(
μ̄(t) /∈ [πm

0

]
ρ1

for all t̃0 ≤ t ≤ t̃1
)

≤ Pt2,ν2

(
μ̄(t) /∈ [L]ρ1 for all t̃0 ≤ t ≤ t̃1

)+ Pt2,ν2

(
τ̄πm

0
≤ t̃1

)
.

Lemma 5.2 implies that

Pt2,ν2

(
τ̄πm

0
≤ t̃1

)
≤ t−δ/c

for large t and small enough ρ1 > 0. Also, with this ρ1, by using Lemma 5.4, we see that

Pt2,ν2

(
μ̄(t) /∈ [L]ρ1 for all t̃0 ≤ t ≤ t̃1

)≤ t−M1/c

for large t, where M1 can be chosen as large as we want. This shows that there exists ε1 > 0
such that

Pt2,ν2

(
θ ≤ t̃1

)≥ 1 − 2t−ε1/c

uniformly for all ν2 ∈ [πm
0

]
ρ1

and large enough t. Hence, from (5.6), (5.7), and (5.3), we get

Pt1,ν1

(
μ̄
(
t + t(c

∗+δ)/c) ∈ [L̃0
]
ρ1

)
≥ (1 − t−M′/c)(1 − 2t−ε1/c)× inf

t2≥t̃0,

ν2∈
[
πm

0

]
ρ1

πm
0 ∈Am

δ̃∈[δ/4,δ]

Pt2,ν2

(
μ̄

(
t2 + t

(cm−1

(
πm

0

)
+δ̃)/c

2

)
∈ [L̃0

]
ρ1

)
,
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and therefore, for some ε > 0, we have

inf
t≤t1≤t+T∗,
ν1∈[L]ρ1

Pt1,ν1

(
μ̄
(
t + t(c

∗+δ)/c) ∈ [L̃0
]
ρ1

)

≥ (1 − t−ε/c)× inf
t2≥t̃0

ν2∈
[
πm

0

]
ρ1

πm
0 ∈Am

δ̃∈[δ/4,δ]

Pt2,ν2

(
μ̄

(
t2 + t

(cm−1

(
πm

0

)
+δ̃)/c

2

)
∈ [L̃0

]
ρ1

)
.

We now focus on the second term. This probability inside the infimum can be bounded below
using steps similar to those above, starting with (5.7); instead of the random variable θ , we
consider the hitting time of a suitable (m − 1)-cycle. Continuing this procedure m times, we
eventually reach A0. Therefore, we can show

inf
t≤t1≤t+T∗
ν1∈
[

L̃0

]
ρ1

Pt1,ν1

(
μ̄(t + t(c

∗+δ)/c) ∈ [L̃0
]
ρ1

)≥ (1 − t−ε/c)m+1
,

and the result now follows from (5.2). �
We now show that the conclusion of Theorem 1.4 fails if we choose c < c∗. Since L̃0 �= L,

we have c∗ > 0. Given c < c∗, let πk ∈ Lk be such that V̂
(
πk
)≤ c < Ṽ

(
πk
)
; this is possible

from the definition of c∗. Note that L̃0 ∩ πk = ∅. The result below shows that the exit time
from a neighbourhood of πk is infinite with positive probability, and this in particular implies
that (5.1) fails.

Proposition 5.1. Let πk be a k-cycle such that V̂
(
πk
)≤ c < Ṽ

(
πk
)
. There exist ε ∈

(0, Ṽ
(
πk
)− c), c′ > 0, ρ1 > 0, and t∗ > 0 such that for all ν ∈ [πk

]
ρ1

∩ MNt
1 (Z) and t ≥ t∗,

we have

Pt,ν
(
τ̄πk < ∞)≤ c′t1−(Ṽ

(
πk
)
−ε)/c.

Proof. We proceed via the steps in Hwang and Sheu [25]. Let T0 = t, and define, for all
n ≥ 1,

Tn+1 := Tn + T
V̂
(
πk
)
/c

n and

T∗
n+1 := Tn + 1

2
T

V̂
(
πk
)
/c

n .

(In the above definitions, we assume that V̂
(
πk
)
> 0; if this is not the case, then we replace

T
V̂
(
πk
)
/c

n in the above definitions by a sufficiently large constant, and the following arguments
will go through.) We have, for any r ≥ 1,

Pt,ν
(
τ̄πk < Tr

)= Pt,ν
(
τ̄πk < Tr−1

)+ Pt,ν
(
Tr−1 ≤ τ̄πk < Tr

)
. (5.8)

To bound the second term, define the stopping time θ := inf{t > T∗
r−1 : μ̄(t) ∈ [L]ρ1}, where ρ1

is to be chosen later. Then

Pt,ν
(
Tr−1 ≤ τ̄πk < Tr

)= Pt,ν
(
Tr−1 ≤ τ̄πk < Tr, θ ≤ T∗

r−1 + T∗)
+ Pt,ν

(
Tr−1 ≤ τ̄πk < Tr, θ > T∗

r−1 + T∗), (5.9)
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where T∗ is such that the second term above is bounded above by T∗−M/c

r−1 , for some M > 0 to
be chosen later (this is possible by Lemma 5.4). To bound the first term, note that

Pt,ν
(
Tr−1 ≤τ̄πk < Tr, θ ≤ T∗

r−1 + T∗)
≤ Pt,ν

(
θ ≤ τ̄πk < Tr, θ ≤ T∗

r−1 + T∗)
≤Et,ν

(
1{μ̄
(
θ
)
∈
[
πk
]
ρ1

,θ≤T∗
r−1+T∗} ·E

θ,μ̄
(
θ
)(1{τ̄

πk <Tr}
))

≤ T
∗−
(

Ṽ
(
πk
)
−V̂
(
πk
)
−ε
)
/c

r−1

holds for sufficiently large t and small enough ρ1. Here, the second inequality follows from
the strong Markov property and the third from Lemma 5.3. Choose M sufficiently large so that
(5.8), (5.9), and the above imply

Pt,ν
(
τ̄πk < Tr

)≤ Pt,ν(τ̄πk < Tr−1) + 2T∗−(Ṽ
(

πk
)

−V̂
(

πk
)

−ε)/c

r−1 .

Then we have

Pt,ν
(
τ̄πk < Tr

)≤ 2
r∑

n=0

T∗−(Ṽ
(

πk
)

−V̂
(

πk
)

−ε)/c

n

≤ c′
1

r∑
n=0

T
−(Ṽ
(
πk
)
−V̂
(
πk
)
−ε)/c

n

= c′
1

r∑
n=0

T
−(Ṽ
(
πk
)
−ε)/c

n (Tn+1 − Tn)

≤ c′
1

∫ Tr

t
u−(Ṽ

(
πk
)
−ε)/cdu,

where c′
1 is a positive constant. Choose ε such that Ṽ

(
πk
)− ε > c, so that the above implies

Pt,ν
(
τ̄πk < Tr

)≤ c′
1

∫ ∞

t
u−(Ṽ

(
πk
)
−ε)/cdu

≤ c′t1−(Ṽ
(
πk
)
−ε)/c

,

where c′ is a positive constant. Let r → ∞, and the result follows since Tr → ∞. �
Example 5.1. We now provide an example where we can choose the transition rates of the par-
ticles so as to minimise a given ‘nice’ function U on M1(Z). Let (Z, EZ ) denote the complete
graph on Z . Suppose that for every ξ ∈ M1(Z) and (z, z′) ∈ EZ with ξ (z) > 0, the limit

∇z,z′U(ξ ) = lim
N→∞

U
(
ξ + δz′−δz

N

)
− U(ξ )

1/N

exists, and is bounded and continuous. Further assume that the above convergence is uniform
over ξ . Consider the transition rates

λ
(N)
z,z′ (ξ ) =

exp

{
−N

(
U

(
ξ + δz′−δz

N

)
− U(ξ )

)}

1 + exp

{
−N

(
U

(
ξ + δz′−δz

N

)
− U(ξ )

)} , ξ ∈ MN
1 (Z), ξ (z) > 0.
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Then, by verifying the detailed balance condition, it is straightforward to show that the
probability measure

1

cN
exp

{− NU
(
zN
)}

, zN ∈ZN,

is invariant for the N-particle evolution, where cN =∑zN∈ZN exp
{− NU

(
zN
)}

. Let
H : M1(Z) → [0, ∞) be the Shannon entropy defined by

H(ξ ) = −
∑
z∈Z

ξ (z) log ξ (z),

with the convention that 0 log 0 = 0. Since the number of zN ∈ZN such that zN = ξ is between
(N + 1)−|Z| exp{NH(ξ )} and exp{NH(ξ )} [17, Lemma 2.1.8], ℘N satisfies

(N + 1)−|Z|

cN
exp{−N(U(ξ ) − H(ξ ))} ≤ ℘N(ξ ) ≤ 1

cN
exp{−N(U(ξ ) − H(ξ ))}.

Therefore, {℘N} satisfies the LDP with rate function U − H. Noting that λ
(N)
z,z′ (ξ ) converges to

λz,z′ (ξ ) = exp{−∇z,z′U(ξ )}
1 + exp{−∇z,z′U(ξ )}

as N → ∞ uniformly over ξ , the empirical measure process μN satisfies the process-level LDP;
see [27]. Therefore, if we modify U to cU, c > 0, the particle addition algorithm could ensure
convergence to a small neighbourhood of a global minimum of cU − H. By choosing c large
enough, we can ensure convergence to a neighbourhood of a global minimum of U.
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