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Abstract

We investigate branching processes in varying environment, for which f n → 1 and∑∞
n=1 (1 − f n)+ = ∞,

∑∞
n=1 (f n − 1)+ < ∞, where f n stands for the offspring mean in

generation n. Since subcritical regimes dominate, such processes die out almost surely,
therefore to obtain a nontrivial limit we consider two scenarios: conditioning on nonex-
tinction, and adding immigration. In both cases we show that the process converges in
distribution without normalization to a nondegenerate compound-Poisson limit law. The
proofs rely on the shape function technique, worked out by Kersting (2020).
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1. Introduction

A Galton–Watson branching process in varying environment (BPVE) (Xn, n ≥ 0) is defined
as

X0 = 1, Xn =
Xn−1∑
j=1

ξn,j, n ∈N= {1, 2, . . .}, (1)

where {ξn,j}n,j∈N are nonnegative independent random variables such that, for each n, {ξn,j}j∈N
are identically distributed; let ξn denote a generic copy. We can interpret Xn as the size of
the nth generation of a population, and ξn,j represents the number of offspring produced by
the jth individual in generation n − 1. These processes are natural extensions of usual homo-
geneous Galton–Watson processes, where the offspring distribution does not change with the
generation.

The investigation of BPVE started in the early 1970s [4, 6]. There has been recent increas-
ing interest in these processes, which was triggered by Kersting [15], who obtained a necessary
and sufficient condition for almost-sure extinction for regular processes. In [15] he introduced
the shape function of a generating function (g.f.), which turned out to be the appropriate tool
for the analysis. Moreover, in [15] Yaglom-type limit theorems (i.e. conditioned on nonextinc-
tion) were obtained. In [2], under different regularity conditions, Yaglom-type limit theorems
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1108 P. KEVEI AND K. KUBATOVICS

were proved in both discrete- and continuous-time settings, extending the results of [14]. For
multitype processes these questions were investigated in [5]. In [3], the authors obtained proba-
bilistic proofs of the results in [15] using spine decomposition. On the general theory of BPVE
we refer to the recent monograph [16], and to the references therein.

Here we are interested in branching processes in nearly degenerate varying environment.
Let fn(s) =Esξn , s ∈ [0, 1], denote the g.f. of the offspring distribution of the nth generation,
and put f n := f ′

n(1) =Eξn for the offspring mean. We assume the following conditions:

(C1) limn→∞ f n = 1,
∑∞

n=1 (1 − f n)+ = ∞,
∑∞

n=1 (f n − 1)+ < ∞.

(C2) limn→∞,f n<1
f ′′
n (1)

1 − f n

= ν ∈ [0, ∞), and
f ′′
n (1)

|1 − f n|
is bounded.

(C3) If ν > 0, then limn→∞,f n<1
f ′′′
n (1)

1 − f n

= 0, and
f ′′′
n (1)

|1 − f n|
is bounded.

Here and later on, limn→∞,f n<1 means that the convergence holds along the subsequence

{n : f n < 1}, and a+ = max{a, 0}. Condition (C1) means that the process is nearly critical and
the convergence f n → 1 is not too fast. Note that we also allow supercritical generations, i.e.
with f n > 1. However, subcritical regimes dominate since, by (C1), EXn =∏n

j=1 f j → 0, and
thus the process dies out almost surely.

Condition (C2) implies that f ′′
n (1) → 0, thus fn(s) → s, so the branching mechanism con-

verges to degenerate branching. Therefore, this nearly critical model does not have a natural
homogeneous counterpart. To obtain nontrivial limit theorems we can condition on nonextinc-
tion, or add immigration. Note that condition (C2) implies that the offspring distributions have
finite second moment, which is assumed throughout the paper.

Conditioned on Xn > 0, in our Theorem 1 we prove that Xn converges in distribution without
normalization to a geometric distribution. Although the process is nearly critical, in this sense
its behavior is similar to a homogeneous subcritical process, where no normalization is needed
to obtain a limit; see Yaglom’s theorem [21] (or [1, Theorem I.8.1, Corollary I.8.1]). For a
regular BPVE (in the sense of [15]), necessary and sufficient conditions were obtained for the
tightness of Xn (without normalization) conditioned on Xn > 0 in [15, Corollary 2]. However,
to the best of our knowledge, our result is the first proper limit theorem without normalization.
Similarly to Yaglom’s theorem in the homogeneous critical case (see [21] or [1, Theorem
I.9.2]), exponential limits for properly normalized processes conditioned on non-extinction
were obtained in several papers; see, e.g., [2, 14, 15].

Allowing immigration usually leads to similar behavior to conditioning on nonextinction.
A branching process in varying environment with immigration (Yn, n ≥ 0) is defined as

Y0 = 0, Yn =
Yn−1∑
j=1

ξn,j + εn, n ∈N, (2)

where {ξn, ξn,j, εn}n,j∈N are nonnegative, independent random variables such that {ξn, ξn,j}j∈N
are identically distributed. As before, ξn,j is the number of offspring of the jth individual in
generation n − 1, and εn is the number of immigrants.

The study of nearly degenerate BPVE with immigration was initiated in [12], where it
was assumed that the offspring have Bernoulli distribution. The most interesting finding in
[12] is that the slow dying out effect can be balanced by a slow immigration rate to obtain
a nontrivial distributional limit without normalization. In this case the resulting process is an
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inhomogeneous first-order integer-valued autoregressive process (INAR(1)). INAR processes
are important in various fields of applied probability; for the theory and applications we refer
to the survey in [20]. The setup of [12] was extended by [17], allowing more general offspring
distributions. For INAR(1) processes the condition f n < 1 is automatic (being a probability),
while in the more general setup of [17] it was assumed. Our conditions (C1) and (C2) do allow
supercritical generations, i.e. f n > 1, with a dominating subcritical regime. The multitype case
was studied in [11].

In general, Galton–Watson processes with immigration in varying environment (i.e. with
time-dependent immigration) are less studied. In [8], the central limit theorem and law of
the iterated logarithm were proved. In [13], a diffusion approximation was obtained in the
strongly critical case, i.e. when, instead of (C1), the condition

∑∞
n=1 |1 − f n| < ∞ holds. [9]

investigated almost-sure extinction, and obtained limit theorems for the properly normalized
process. Since we prove limit theorems for the process without normalization, both our results
and assumptions are rather different from those in the papers mentioned.

Generalizing the results in [17], in Theorems 2 and 3 we show that, under appropriate
assumptions on the immigration, the slow extinction trend and the slow immigration trend are
balanced and we get a nontrivial compound-Poisson limit distribution without normalization.

The rest of the paper is organized as follows. Section 2 contains the main results. All the
proofs are gathered together in Section 3. The proofs are rather technical, and based on analysis
of the composite g.f. We rely on the shape function technique worked out in [15].

2. Main results

2.1. Yaglom-type limit theorems

Consider the BPVE (Xn) in (1). Condition (C1) implies that the process dies out almost
surely. In [15] a BPVE process (Xn) is called regular if

E[ξ2
n 1(ξn ≥ 2)] ≤ cE[ξn1(ξn ≥ 2)]E[ξn | ξn ≥ 1]

holds for some c > 0 and for all n, where 1 stands for the indicator function. In our setup, if
(C1)–(C3) are satisfied with ν > 0 then the process is regular, while if ν = 0 there are nonreg-
ular examples (e.g. P(ξn = 0) = n−1, P(ξn = 1) = 1 − n−1 − n−4, P(ξn = n) = n−4 works). For
regular processes the results in [15] apply. According to Kersting’s classification of regular
BPVEs [15, Proposition 1], a regular process satisfying (C1)–(C3) is subcritical. Indeed,
EXn → 0 and, by Lemma 2 and (C2),

lim
n→∞ f 0,n

n∑
k=1

f ′′
k (1)

f 0,k−1f
2
k

= ν.

Furthermore, [15, Corollary 2] states that the sequence L(Xn | Xn > 0) is tight if and only
if supn≥0 E[Xn | Xn > 0] < ∞. Here, L(Xn | Xn > 0) stands for the law of Xn conditioned on
nonextinction. In Lemma 4 we show that the latter condition holds; in fact the limit exists.
Therefore, the sequence of conditional laws is tight. In the next result, we prove that the limit
distribution also exists.

The random variable V has geometric distribution with parameter p ∈ (0, 1], V ∼ Geom(p),
if P(V = k) = (1 − p)k−1p, k = 1, 2, . . .
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1110 P. KEVEI AND K. KUBATOVICS

Theorem 1. Assume that (C1)–(C3) are satisfied. Then, for the BPVE (Xn) in (1),

L(Xn|Xn > 0)
D−→ Geom

(
2

2 + ν

)
as n → ∞, where

D−→ denotes convergence in distribution.

The result holds with ν = 0, in which case the sequence of random variables converges in
probability to 1.

Example 1. Let fn(s) = fn[0] + fn[1]s + fn[2]s2; then f n = fn[1] + 2fn[2], f ′′
n (1) = 2fn[2], and

f ′′′
n (1) = 0. Assuming that fn[0] + fn[2] → 0, fn[0] > fn[2],

∑∞
n=1 (fn[0] − fn[2]) = ∞, and

2fn[2]/(fn[0] − fn[2]) → ν ∈ [0, ∞) as n → ∞, the conditions of Theorem 1 are fulfilled.

2.2. Nearly degenerate branching processes with immigration

Recall (Yn), the BPVE with immigration from (2), and introduce the factorial moments of
the immigration mn,k := E[εn(εn − 1) · · · (εn − k + 1)], k ∈N.

Theorem 2. Assume that (C1)–(C3) are satisfied, and also

(C4) limn→∞,f n<1 mn,k/(k!(1 − f n)) = λk, k = 1, 2, . . . , K, with λK = 0, and for each k ≤ K

the sequence (mn,k/|1 − f n|)n is bounded.

Then, for the BPVE with immigration (Yn) in (2), Yn
D−→ Y as n → ∞, where the random

variable Y has compound-Poisson distribution and, for its g.f. fY ,

log fY (s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−

K−1∑
k=1

2kλk

νk

(
log

(
1 + ν

2
(1 − s)

)
+

k−1∑
i=1

νi

i2i
(s − 1)i

)
, ν > 0,

K−1∑
k=1

λk

k
(s − 1)k, ν = 0.

Note that fY is continuous in ν ∈ [0, ∞). Under further assumptions we might allow
infinitely many nonzero λs.

Theorem 3. Assume that (C1)–(C3) are satisfied, and

(C4′) limn→∞,f n<1 mn,k/(k!(1 − f n)) = λk, k = 1, 2, . . ., such that lim supn→∞ λ
1/n
n ≤ 1, and

(mn,k/|1 − f n|)n is bounded for each k.

Then, for the BPVE with immigration (Yn) in (2), Yn
D−→ Y as n → ∞, where the random

variable Y has compound-Poisson distribution and, for its g.f. fY ,

log fY (s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

∞∑
k=1

2kλk

νk

(
log

(
1 + ν

2
(1 − s)

)
+

k−1∑
i=1

νi

i2i
(s − 1)i

)
, ν > 0,

∞∑
k=1

λk

k
(s − 1)k, ν = 0.

(3)

Remark 1. If K = 2 in Theorem 2 then Y has (generalized) negative binomial distribution
with parameters 2λ1/ν (not necessarily integer) and 2/(2 + ν) as shown in [17, Theorem 5]. In
particular, Theorems 2 and 3 are generalizations of [17, Theorem 5].
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If ν = 0 in condition (C2), then the results in Theorems 2 and 3 follow from [17, Theorem 4]
when f n < 1 for all n. Our results are new even in this special case.

Remark 2. Conditions (C4) and (C4′) mean that the immigration is of the proper order, i.e.
limn→∞,f n<1 P(εn = j)/(1 − f n) exists for each j ≥ 1; see Theorem 4.

Conditions (C4) and (C4′) are not comparable in the sense that neither implies the other.
Indeed, if (C4) holds with K = 3, then it is possible that fourth moments do not exist, while in
(C4′) all moments have to be finite.

We can construct examples for which λ2 = 0, λ3 = 1, λ4 = ∞. In this case (C4) in
Theorem 2 holds with K = 2. On the other hand, it is easy to show that if λn1 = λn2 = 0 for
some n1 < n2, then λn = 0 for n1 < n < n2.

The g.f. fY of the limit has a rather complicated form. In the proof, showing the pointwise
convergence of the generating functions, we prove that the accompanying laws converge in
distribution to Y . Since the accompanying laws are compound-Poisson, this implies (see, e.g.,
[19, Proposition 2.2]) that the limit Y is compound-Poisson too. That is, Y =∑N

i=1 Zi, where
Z, Z1, Z2, . . . are independent and identically distributed nonnegative integer-valued random
variables, and independently N has Poisson distribution. This is an important class of distribu-
tions, since it is exactly the class of infinitely divisible distributions on the nonnegative integers;
see, e.g., [19, Theorem II.3.2]. Interestingly, from the form of the g.f. fY it is difficult to deduce
that it is compound-Poisson, because the logarithm is given as a power series in 1 − s, while
for the compound-Poisson this is a power series in s. Under some conditions on the sequence
(λn) we can rewrite log fY to a series expansion in s, which allows us to understand the structure
of the limit.

Theorem 4. Assume one of the following:

(i) the conditions of Theorem 2 hold; or

(ii) the conditions of Theorem 3 hold and lim supn→∞ λ
1/n
n ≤ 1

2 .

Then the limiting g.f. in Theorems 2 and 3 can be written as

fY (s) = exp

{ ∞∑
n=1

An(sn − 1)

}
,

where

An =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
νn

n(2 + ν)n

∞∑
j=1

qj

[(
1 + 2

ν

)min (j,n)

− 1

]
, ν > 0,

1

n

∞∑
j=n

qj, ν = 0,

qj = lim
n→∞,f n<1

P(εn = j)

1 − f n

, j = 1, 2, . . .

Remark 3. For ν = 0, the latter formula was obtained in [12, Remark 2]. In fact, the last limit
exists without any extra conditions on the (λn)n sequence, see Lemma 8. Furthermore, it is
clear that under (C4), qk = 0 for k ≥ K. The form of fY also implies that the limit has the
representation Y =∑∞

n=1 nNn, where (Nn) are independent Poisson random variables, such
that Nn has parameter An.
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3. Proofs

3.1. Preparation

In the proofs, we analyze the g.f. of the underlying processes. To prove distributional
convergence for nonnegative integer-valued processes, it is enough to prove the pointwise
convergence of the g.f., and show that the limit is a g.f. as well [7, p. 280].

Recall that fn(s) =Esξn represents the offspring g.f. in generation n. For the composite g.f.,
introduce the notation fn,n(s) = s and, for j < n, fj,n(s) := fj+1 ◦ · · · ◦ fn(s); and for the corre-
sponding means f n,n = 1 and f j,n := f j+1 · · · f n, j < n. Then it is well known that EsXn = f0,n(s)

and EXn = f 0,n.
For a g.f. f , with mean f and f ′′(1) < ∞, define the shape function as

ϕ(s) = 1

1 − f (s)
− 1

f (1 − s)
, 0 ≤ s < 1, ϕ(1) = f ′′(1)

2 (f )2
. (4)

Let ϕj be the shape function of fj. By the definition of fj,n,

1

1 − fj,n(s)
= 1

f j+1(1 − fj+1,n(s))
+ ϕj+1(fj+1,n(s)).

Therefore, iteration gives ([15, Lemma 5], [16, Proposition 1.3])

1

1 − fj,n(s)
= 1

f j,n(1 − s)
+ ϕj,n(s), (5)

where

ϕj,n(s) :=
n∑

k=j+1

ϕk(fk,n(s))

f j,k−1

. (6)

The latter formulas show the usefulness of the shape function. The next statement gives precise
upper and lower bounds on the shape function.

Lemma 1. ([15, Lemma 1], [16, Proposition 1.4].) Assume 0 < f < ∞, f ′′(1) < ∞, and let ϕ(s)
be the shape function of f. Then, for 0 ≤ s ≤ 1, 1

2ϕ(0) ≤ ϕ(s) ≤ 2ϕ(1).

For further properties of shape functions we refer to [16, Chapter 1] and [15].
We frequently use the following extension of [12, Lemma 5], which is a version of the

Silverman–Toeplitz theorem.

Lemma 2. Let (f n)n∈N be a sequence of positive real numbers satisfying (C1), and define

a(k)
n,j = (1 − f j)

n∏
i=j+1

f
k
i = (1 − f j)f

k
j,n, n, j, k ∈N, j ≤ n − 1,

a(k)
n,n = 1 − f n.

If (xn)n∈N is bounded and limn→∞,f n<1 xn = x ∈R, then, for all k ∈N,

lim
n→∞

n∑
j=1

a(k)
n,jxj = x

k
, lim

n→∞

n∑
j=1

|a(k)
n,j|xj = x

k
. (7)

Proof. Let us define A = {j : f j > 1}, An = A ∩ {1, . . . , n}. First we show that the following
conditions (similar to those of the Silverman–Toeplitz theorem) hold:
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(i) limn→∞ a(k)
n,j = 0 for all j ∈N;

(ii) limn→∞
∑n

j=1 a(k)
n,j = 1/k;

(iii) supn∈N
∑n

j=1 |a(k)
n,j| < ∞;

(iv) limn→∞
∑

j∈An
|a(k)

n,j| = 0.

It is easy to see that (i) holds, as, by (C1),

|a(k)
n,j| = |1 − f j|

n∏
�=j+1

f
k
� ≤ |1 − f j| exp

{
−k

n∑
�=j+1

(1 − f �)

}
→ 0.

Here and later on, any nonspecified limit relation is meant as n → ∞. Since

0 ≤ f 0,n ≤ exp

{
−

n∑
j=1

(1 − f j)

}
→ 0,

we have
n∑

j=1

a(1)
n,j =

n∑
j=1

(1 − f j)f j,n =
n∑

j=1

(f j,n − f j−1,n) = 1 − f 0,n → 1,

which is (ii) for k = 1. Furthermore,

n∑
j=1

|a(1)
n,j | =

n∑
j=1

|1 − f j| · f j,n =
n∑

j=1

[
(1 − f j) + 2(1 − f j)−

]
f j,n < ∞,

i.e. (iii) holds for k = 1. Note that supj,n f j,n < ∞ by (C1). To see (iv), we have

∑
j∈An

|a(k)
n,j| =

n∑
j=1

(f j − 1)+f
k
j,n → 0,

since limn→∞ f j,n = 0, and
(
(f j − 1)+ sup�,n f

k
�,n

)
j is an integrable majorant, so Lebesgue’s

dominated convergence theorem applies.
Before proving (ii) and (iii) for k ≥ 2 we show (7) for k = 1. Let (xn)n∈N be a sequence with

the required properties. Then

n∑
j=1

a(1)
n,jxj − x =

n∑
j=1

a(1)
n,j(xj − x) + x

(
n∑

j=1

a(1)
n,j − 1

)
,

where the second term tends to 0 by (ii). For the first term we have∣∣∣∣∣
n∑

j=1

a(1)
n,j(xj − x)

∣∣∣∣∣=
∣∣∣∣∣∑

j∈An

a(1)
n,j(xj − x) +

∑
j �∈An

a(1)
n,j(xj − x)

∣∣∣∣∣
≤ 2 sup

k
|xk| ·

∑
j∈An

|a(1)
n,j | +

∑
j �∈An

|a(1)
n,j(xj − x)|,
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where the first term tends to 0 by (iv), and the second tends to 0 by (i) and (iii). Thus, the first
equation in (7) holds for k = 1. Furthermore, since a(k)

j,n ≤ 0 if and only if j ∈ An, conditions

(i)–(iv) remain true for |a(k)
n,j|, and thus

lim
n→∞

n∑
j=1

|a(1)
n,j |xj = x. (8)

Next, we prove (ii) and (iii) for arbitrary k ≥ 2. By the binomial theorem,

1 − f
k
0,n = k

n∑
j=1

a(k)
n,j +

k∑
i=2

(−1)i+1
(

k

i

) n∑
j=1

(1 − f j)
i−1a(k)

n,j. (9)

Moreover, for i ≥ 2,
n∑

j=1

|(1 − f j)
i−1a(k)

n,j| =
n∑

j=1

|1 − f j|if k
j,n ≤ ( sup

�,n
f �,n)k−1

n∑
j=1

|a(1)
n,j ||1 − f j|i−1 → 0

by (8). Thus, all the terms in the second sum on the right-hand side of (9) tend to 0. Since
f 0,n → 0, (ii) follows. Then (iii) follows as for k = 1. This completes the proof of (ii) and (iii)
for k ≥ 2. Then (7) for k ≥ 2 follows exactly as for k = 1. �

Lemma 3. Let ϕn be the shape function of fn. Then, under the conditions of Theorem 1 with
ν > 0,

lim
n→∞,f n<1

sup
s∈[0,1]

|ϕn(1) − ϕn(s)|
1 − f n

= 0,

and the sequence sups∈[0,1] |ϕn(1) − ϕn(s)|/|1 − f n| is bounded.

Proof. To ease the notation we suppress the lower index n. By the Taylor expansion,

f (s) = 1 + f (s − 1) + 1

2
f ′′(1)(s − 1)2 + 1

6
f ′′′(t)(s − 1)3

for some t ∈ (s, 1). Thus, recalling (4), the shape function can be written in the form

ϕ(s) = f (1 − s) − 1 + f (s)

f (1 − s)(1 − f (s))
= f ′′(1)

2f
2

1 − (f ′′′(t)/(3f ′′(1)))(1 − s)

1 − (f ′′(1)/(2f ))(1 − s) + (f ′′′(t)/(6f ))(1 − s)2
.

Therefore,

ϕ(1) − ϕ(s)

1 − f
= f ′′(1)

2f
2
(1 − f )

(
1 − 1 − (f ′′′(t)/(3f ′′(1)))(1 − s)

1 − (f ′′(1)/(2f ))(1 − s) + (f ′′′(t)/(6f ))(1 − s)2

)
. (10)

Using the assumptions and the monotonicity of f ′′′, uniformly in s ∈ (0, 1],

lim
n→∞,f n<1

[
f ′′′
n (t)

f ′′
n (1)

+ f ′′
n (1)

f n

+ f ′′′
n (t)

f n

]
= 0;

thus, convergence on {n : f n < 1} follows.
The boundedness also follows from (10), since if f n > 1 then

f ′′
n (1) =E(ξn(ξn − 1)) ≥E(ξn − 1) = f n − 1,

and f ′′′
n (1)/|1 − f n| is bounded by assumption (C3). �

https://doi.org/10.1017/jpr.2024.15 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.15


Nearly degenerate branching process in varying environment 1115

3.2. Proof of Theorem 1

Lemma 4. Under the conditions of Theorem 1, for s ∈ [0, 1),

lim
n→∞

f 0,n

1 − f0,n(s)
= 1

1 − s
+ ν

2
.

Proof. Recalling (5) and (6), we have to show that

f 0,nϕ0,n(s) =
n∑

j=1

f j−1,nϕj(fj,n(s)) → ν

2
.

First, let ν = 0. Using Lemmas 1 and 2,

f 0,nϕ0,n(s) ≤
n∑

j=1

f j,n

f ′′
j (1)

f j

=
n∑

j=1

|a(1)
n,j |

f ′′
j (1)

f j|1 − f j|
→ 0.

If f j = 1 then by (C2) necessarily f ′′
j (1) = 0, and 0/0 in these types of sums are meant as 0.

For ν ∈ (0, ∞) write
n∑

j=1

f j−1,nϕj(fj,n(s)) =
n∑

j=1

f j−1,nϕj(1) −
n∑

j=1

f j−1,n(ϕj(1) − ϕj(fj,n(s))). (11)

By Lemma 2, for the first term we have
n∑

j=1

f j−1,nϕj(1) = 1

2

n∑
j=1

a(1)
n,j

1

f j

f ′′
j (1)

1 − f j

→ ν

2
. (12)

For the second term in (11),∣∣∣∣∣
n∑

j=1

f j−1,n(ϕj(1) − ϕj(fj,n(s)))

∣∣∣∣∣≤
n∑

j=1

a(1)
n,j f j sup

s∈[0,1]

|ϕj(1) − ϕj(s)|
|1 − f j|

→ 0

according to Lemmas 2 and 3. Combining with (11) and (12), the statement follows. �

Proof of Theorem 1. We prove the convergence of the conditional g.f. For s ∈ (0, 1) we have,
by the previous lemma,

E[sXn | Xn > 0] = f0,n(s) − f0,n(0)

1 − f0,n(0)
= 1 − 1 − f0,n(s)

1 − f0,n(0)
→ 2

2 + ν

s

1 − (ν/(ν + 2))s
,

where the limit is the g.f. of the geometric distribution with parameter 2/(2 + ν). �

3.3. Proofs of Theorems 2 and 3

We need a strange version of the Riemann approximation, where the points in the partition
are not necessarily increasing. It follows immediately from the uniform continuity.

Lemma 5. Assume that xn,j ∈ [0, 1], j = 0, . . . , n, n ∈N, such that xn,0 = 0, xn,n = 1,
limn→∞ supj |xn,j − xn,j−1| = 0, and supn

∑n
j=1 |xn,j − xn,j−1| < ∞. If f is continuous on [0, 1]

then

lim
n→∞

n∑
j=1

f (un,j)(xn,j − xn,j−1) =
∫ 1

0
f (x) dx,

with un,j ∈ [ min (xn,j−1, xn,j), max (xn,j−1, xn,j)].
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We also need a simple lemma on an alternating sum involving binomial coefficients.

Lemma 6. For x ∈R,

k−1∑
i=1

(
k − 1

i

)
(−1)i (1 + x)i − 1

i
=

k−1∑
i=1

(−1)i xi

i
.

Proof. Both sides are polynomials of x, and equality holds for x = 0, therefore it is enough
to show that the derivatives are equal. Differentiating the left-hand side we obtain

k−1∑
i=1

(
k − 1

i

)
(−1)i(1 + x)i−1 = 1

1 + x
[(1 − (1 + x))k−1 − 1].

Differentiating the right-hand side and multiplying by (1 + x), the statement follows. �

The next statement is an easy consequence of the Taylor expansion of the g.f.

Lemma 7. ([12, Lemma 6].) Let ε be a nonnegative integer-valued random variable with fac-
torial moments mk := E[ε(ε − 1) · · · (ε − k + 1)], k ∈N, m0 := 1, and with g.f. h(s) =Esε,
s ∈ [ − 1, 1]. If m� < ∞ for some � ∈N with |s| ≤ 1, then

h(s) =
�−1∑
k=0

mk

k! (s − 1)k + R�(s), |R�(s)| ≤ m�

�! |s − 1|�.

Proof of Theorem 2. Recall that fn(s) =Esξn , and let gn(s) =EsYn and hn(s) =Esεn . Then
the branching property gives (see, e.g., [9, Proposition 1]) gn(s) =∏n

j=1 hj(fj,n(s)). We prove
the convergence of the g.f., i.e. limn→∞ gn(s) = fY (s), s ∈ [0, 1]. Fix s ∈ [0, 1), and intro-
duce ĝn(s) =∏n

j=1 ehj(fj,n(s))−1. Note that ĝn is a kind of accompanying law, its distribution
is compound-Poisson, and therefore its limit is compound-Poisson too [19, Proposition 2.2].
By the convexity of the g.f.,

fj,n(s) ≥ 1 + f j,n(s − 1). (13)

If |ak|, |bk| < 1, k = 1, . . . , n, then∣∣∣∣∣
n∏

k=1

ak −
n∏

k=1

bk

∣∣∣∣∣≤
n∑

k=1

|ak − bk|.

Consequently, using the latter inequality, the inequalities |eu − 1 − u| ≤ u2 for |u| ≤ 1 and 0 ≤
1 − hj(s) ≤ mj,1(1 − s), and (13), we have

|gn(s) − ĝn(s)| ≤
n∑

j=1

|ehj(fj,n(s))−1 − hj(fj,n(s))|

≤
n∑

j=1

(hj(fj,n(s)) − 1)2 ≤
n∑

j=1

m2
j,1

|1 − f j|
|a(2)

n,j | → 0, (14)

where we used Lemma 2, since

lim
n→∞,f n<1

mn,1

1 − f n

= λ1 implies lim
n→∞,f n<1

m2
n,1

1 − f n

= 0.
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Therefore, we need to show that

lim
n→∞

n∑
j=1

(hj(fj,n(s)) − 1) = log fY (s). (15)

By Lemma 7,

hj(s) =
K−1∑
k=0

mj,k

k! (s − 1)k + Rj,K(s), (16)

where |Rj,K(s)| ≤ (mj,K/K!)(1 − s)K , and thus

n∑
j=1

(hj(fj,n(s)) − 1) =
n∑

j=1

[
K−1∑
k=1

mj,k

k! (fj,n(s) − 1)k + Rj,K(fj,n(s))

]

=
K−1∑
k=1

(−1)k
n∑

j=1

mj,k

k!(1 − f j)
a(k)

n,j

(
1 − fj,n(s)

f j,n

)k

+
n∑

j=1

Rj,K(fj,n(s)). (17)

By (13) and Lemma 2,∣∣∣∣∣
n∑

j=1

Rj,K(fj,n(s))

∣∣∣∣∣≤
n∑

j=1

mj,K

K! |fj,n(s) − 1|K

≤
n∑

j=1

mj,K

K! f
K
j,n(1 − s)K = (1 − s)K

n∑
j=1

mj,K

K!|1 − f j|
|a(K)

n,j | → 0. (18)

Up to this point, everything works for ν ≥ 0. Now assume that ν > 0. Then, by Lemmas 2
and 3, ∣∣∣∣∣

n∑
i=j+1

a(1)
n,i f i

ϕi(1) − ϕi(fi,n(s))

1 − f i

∣∣∣∣∣≤ sup
k≥1

f k

n∑
i=1

|a(1)
n,i | sup

t∈[0,1]

|ϕi(1) − ϕi(t)|
|1 − f i|

→ 0, (19)

and similarly∣∣∣∣∣
n∑

i=j+1

a(1)
n,i f i

ϕi(1)

1 − f i

− ν

2

n∑
i=j+1

a(1)
n,i

∣∣∣∣∣≤
n∑

i=1

|a(1)
n,i |
∣∣∣∣ 1

f i

f ′′
i (1)

2(1 − f i)
− ν

2

∣∣∣∣→ 0. (20)

Putting

εj,n =
n∑

i=j+1

a(1)
n,i f i

ϕi(fi,n(s))

1 − f i

− ν

2
(1 − f j,n), (21)

by (5) and (6) we have

f j,n

1 − fj,n(s)
= 1

1 − s
+

n∑
i=j+1

a(1)
n,i f i

ϕi(fi,n(s))

1 − f i

= 1

1 − s
+ ν

2
(1 − f j,n) + εj,n. (22)

Noting that
∑n

i=j+1 a(1)
n,i = 1 − f j,n, (19), (20), and the triangle inequality imply that, for εj,n in

(21),

max
j≤n

|εj,n| = max
j≤n

∣∣∣∣ f j,n

1 − fj,n(s)
− 1

1 − s
− ν

2
(1 − f j,n)

∣∣∣∣→ 0. (23)
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The latter further implies that

lim sup
n→∞

max
j≤n

1 − fj,n(s)

f j,n

≤ 1 − s, (24)

and that for n large enough, by the mean value theorem and (22),∣∣∣∣( f j,n

1 − fj,n(s)

)−k

−
(

1

1 − s
+ ν

2
(1 − f j,n)

)−k∣∣∣∣≤ kεj,n.

Thus, by (24),∣∣∣∣∣
n∑

j=1

a(k)
n,j

[
mj,k

k!(1 − f j)

(
1 − fj,n(s)

f j,n

)k

− λk

(
1

1 − s
+ ν

2
(1 − f j,n)

)−k]∣∣∣∣∣
≤

n∑
j=1

|a(k)
n,j|
[∣∣∣∣ mj,k

k!(1 − f j)
− λk

∣∣∣∣(1 − fj,n(s)

f j,n

)k

+ λk

∣∣∣∣(1 − fj,n(s)

f j,n

)k

−
(

1

1 − s
+ ν

2
(1 − f j,n)

)−k∣∣∣∣
]

≤
n∑

j=1

|a(k)
n,j|
∣∣∣∣ mj,k

k!(1 − f j)
− λk

∣∣∣∣+ λk

n∑
j=1

|a(k)
n,j|k max

j≤n
εj,n → 0, (25)

where the second inequality holds for n large enough.
Furthermore, by Lemma 5,

lim
n→∞

n∑
j=1

a(k)
n,j

(
1

1 − s
+ ν

2
(1 − f j,n)

)−k

=
∫ 1

0

yk−1

(1/(1 − s) + (ν/2)(1 − y))k
dy, (26)

since the left-hand side is a Riemann approximation of the right-hand side corresponding to
the partition {f j,n}n

j=−1, with f −1,n := 0 and f j,n − f j−1,n = a(1)
n,j → 0 uniformly in j according

to Lemma 2, while f 0,n → 0 by (C1). Changing variables u = ν(1 − s)(1 − y) + 2 and using
the binomial theorem,∫ 1

0

yk−1

(1/(1 − s) + (ν/2)(1 − y))k
dy

= 2k(1 − s)k
∫ 1

0

yk−1

(2 + ν(1 − s)(1 − y))k
dy

= 2k

νk

∫ ν(1−s)+2

2

(2 + ν(1 − s) − u)k−1

uk
du

= 2k

νk

∫ ν(1−s)+2

2

1

uk

k−1∑
i=0

[(
k − 1

i

)
(2 + ν(1 − s))i(−u)k−1−i

]
du

= 2k

νk

k−1∑
i=0

[(
k − 1

i

)
(2 + ν(1 − s))i(−1)k−1−i

∫ ν(1−s)+2

2
u−(i+1) du

]
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= (−1)k+1 2k

νk

(
log

(
1 + ν

2
(1 − s)

)
+

k−1∑
i=1

(
k − 1

i

)
(−1)i (1 + (ν/2)(1 − s))i − 1

i

)

= (−1)k+1 2k

νk

(
log

(
1 + ν

2
(1 − s)

)
+

k−1∑
i=1

(−1)i νi

i2i
(1 − s)i

)
, (27)

where the last equality follows from Lemma 6. Substituting back into (17), by (18), (25), (26),
and (27) we obtain (15).

To finish the proof we need to handle the ν = 0 case. Then the calculations are easier. We
can still define εj,n as in (21), and (20) remains true. Applying Lemma 1, we see that (23) and
(24) hold true as well, therefore (25) follows with ν = 0 everywhere. There is no need for the
Riemann approximation, (15) follows from Lemma 2. �

Proof of Theorem 3. Here we consider only the ν > 0 case. For ν = 0 the calculations are
easier, and follow similarly to the previous proof.

Similarly to the proof of Theorem 2, (14) holds, so it is enough to prove that

n∑
j=1

(hj(fj,n(s)) − 1) → log fY (s).

Fix s ∈ (0, 1). By Taylor’s theorem, for some ξ ∈ (0, ν(1 − s)/2),

log

(
1 + ν

2
(1 − s)

)
+

k−1∑
i=1

(−1)i νi

i2i
(1 − s)i = νk(1 − s)k

2k

1

(1 + ξ )k

1

k
,

so
2k

νk

∣∣∣∣∣ log

(
1 + ν

2
(1 − s)

)
+

k−1∑
i=1

(−1)i νi

i2i
(1 − s)i

∣∣∣∣∣≤ (1 − s)k

k
.

Therefore, for any ε > 0 there exists � large enough such that∣∣∣∣∣
∞∑

k=�

2kλk

νk

(
log

(
1 + ν

2
(1 − s)

)
+

k−1∑
i=1

(−1)i νi

i2i
(1 − s)i

)∣∣∣∣∣≤
∞∑

k=�

λk(1 − s)k

k
< ε. (28)

By Lemma 7, (16) holds with K = � and therefore

n∑
j=1

(hj(fj,n(s)) − 1) =
n∑

j=1

[
�−1∑
k=1

mj,k

k! (fj,n(s) − 1)k + Rj,�(fj,n(s))

]

=
�−1∑
k=1

n∑
j=1

mj,k

k! (fj,n(s) − 1)k +
n∑

j=1

Rj,�(fj,n(s)).

Moreover, by (13) and Lemma 2,∣∣∣∣∣
n∑

j=1

Rj,�(fj,n(s))

∣∣∣∣∣≤
n∑

j=1

mj,�

�! |fj,n(s) − 1|� ≤
n∑

j=1

mj,�

�! f
�

j,n(1 − s)� → (1 − s)�

�
λ� ≤ ε. (29)
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Summarizing,∣∣∣∣∣
n∑

j=1

(hj(fj,n(s)) − 1) − log fY (s)

∣∣∣∣∣
≤
∣∣∣∣∣

�−1∑
k=1

n∑
j=1

mj,k

k! (fj,n(s) − 1)k

+
�−1∑
k=1

2kλk

νk

(
log

(
1 + ν

2
(1 − s)

)
−

k−1∑
i=1

(−1)i+1 νi

i2i
(1 − s)i

)∣∣∣∣∣
+
∣∣∣∣∣

∞∑
k=�

2kλk

νk

(
log

(
1 + ν

2
(1 − s)

)
−

k−1∑
i=1

(−1)i+1 νi

i2i
(1 − s)i

)∣∣∣∣∣
+
∣∣∣∣∣

n∑
j=1

Rj,�(fj,n(s))

∣∣∣∣∣,
where the first term on the right-hand side converges to 0 by the previous result, while the
second and third terms are small for n large by (28) and (29). As ε > 0 is arbitrary, the proof is
complete. �

3.4. Proof of Theorem 4

Before the proof, we need two auxiliary lemmas.

Lemma 8. If condition (C4) of Theorem 2 or (C4′) of Theorem 3 hold, then

qi = lim
n→∞,f n<1

P(εn = i)

1 − f n

exists for each i = 1, 2, . . .

Proof. Without loss of generality we assume that f n < 1 for each n. Otherwise, simply
consider everything on the subsequence {n : f n < 1}.

Let hn[i] = P(εn = i). If (C4) holds, there are only finitely many λs, and the statement fol-
lows easily by backward induction. However, if (C4′) holds, a more involved argument is
needed, which works in both cases.

The kth moment of a random variable can be expressed in terms of its factorial moments as

μn,k := Eεk
n =

k∑
i=1

{
k

i

}
mn,i,

where {
k

i

}
= 1

i!
i∑

j=0

(−1)j
(

i

j

)
(i − j)k

denotes the Stirling number of the second kind; on Stirling numbers, see [10, Section 6.1].
Therefore,

∞∑
i=1

ikhn[i]

1 − f n

= μn,k

1 − f n

=
k∑

i=1

{
k

i

}
mn,i

1 − f n

→
k∑

i=1

{
k

i

}
i!λi =: μk. (30)
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Hence, the sequence (hn[i]/(1 − f n))n∈N is bounded in n for all i. Therefore, any subsequence
contains a further subsequence (n�) such that

lim
�→∞

hn�
[i]

1 − f n�

= qi for all i ∈N. (31)

To prove the statement we have to show that the sequence (qi) is unique, it does not depend on
the subsequence. Note that the sequence (qi)i∈N is not necessarily a probability distribution.

By Fatou’s lemma and (30),

μk = lim
�→∞

μn�,k

1 − f n�

≥
∞∑

i=1

lim
�→∞

hn�
[i]

1 − f n�

ik =
∞∑

i=1

qii
k. (32)

Let ε > 0 and k ∈N be arbitrary. Write n� = n, and put K := μk+1/ε� + 1, with ·� represent-
ing the lower integer part. Then

∞∑
i=1

hn[i]

1 − f n

ik+1 ≥
∞∑

i=K+1

hn[i]

1 − f n

ikK,

and hence, by (30) and the definition of K,

lim sup
n→∞

∞∑
i=K+1

hn[i]

1 − f n

ik ≤ ε.

Therefore, by (31),

μk = lim
n→∞

∞∑
i=1

hn[i]

1 − f n

ik ≤ lim sup
n→∞

K∑
i=1

hn[i]

1 − f n

ik + ε ≤
∞∑

i=1

qii
k + ε.

Since ε > 0 is arbitrary, by (32),

μk =
∞∑

i=1

qii
k. (33)

Using the Stieltjes moment problem we show that the sequence (μk) uniquely determines (qi).
In order to do that, it is enough to show that Carleman’s condition [18, Theorem 5.6.6] is
fulfilled, i.e. μk is not too large. Since lim supn→∞ λ

1/n
n ≤ 1, for n large, λn ≤ 2n. Furthermore,

by trivial upper bounds, {
k

i

}
i! =

i∑
�=0

(−1)�
(

i

�

)
(i − �)k ≤ ik2i,

and thus, by (30), for some C > 0,

μk =
k∑

i=0

{
k

i

}
i!λi ≤ C +

k∑
i=0

ik4i ≤ C(4k)k ≤ k2k

for k large enough, showing that Carleman’s condition holds. Hence the sequence (qi)i∈N is
indeed unique, and the proof is complete. �
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Lemma 9. For any L ≥ 1, n ≥ 1, and x ∈R,

L∑
j=1

j∑
�=1

(−1)�+j
(

L + n

j + n

)(
j − � + n − 1

n − 1

)
x� = (1 + x)L − 1.

Proof. Changing the order of summation, it is enough to prove that, for L ≥ 1, n ≥ 1, and
1 ≤ � ≤ L,

L∑
j=�

(−1)j+�

(
L + n

j + n

)(
j − � + n − 1

n − 1

)
=
(

L

�

)
.

We prove this by induction on L. It holds for L = 1, and assuming for L ≥ 1, for L + 1 we have,
by the induction hypothesis for (L, �, n) and (L, � − 1, n),

L+1∑
j=�

(−1)j+�

(
L + 1 + n

j + n

)(
j − � + n − 1

n − 1

)

=
(

L

�

)
+

L+1∑
j=�

(−1)j+�

(
L + n

j + n − 1

)(
j − � + n − 1

n − 1

)

=
(

L

�

)
+

L∑
j=�−1

(−1)j+�−1
(

L + n

j + n

)(
j − (� − 1) + n − 1

n − 1

)

=
(

L

�

)
+
(

L

� − 1

)
=
(

L + 1

�

)
,

as claimed. �

Proof of Theorem 4. In order to handle assumptions (i) and (ii) together, under (i) we use
the notation λk = 0 for k ≥ K. Then the limiting g.f. fY is given in (3).

First, assume that ν > 0. Substituting the Taylor series of the logarithm,

log

(
1 + ν

2
(1 − s)

)
= log

(
1 + ν

2

)
−

∞∑
n=1

n−1
(

ν

2 + ν

)n

sn, s ∈ (0, 1),

into (3), expanding (1 − s)i, and gathering together the powers of s, we have

fY (s) = exp

{
−

∞∑
k=1

2kλk

νk

(
log

(
1 + ν

2

)
−

∞∑
n=1

1

n

(
ν

2 + ν

)n

sn +
k−1∑
i=1

(−1)i νi

i2i

i∑
j=0

(
i

j

)
(−s)j

)}

= exp

{
−

∞∑
k=1

2kλk

νk

(
log

(
1 + ν

2

)
+

k−1∑
i=1

(−1)i νi

i2i

)

+
∞∑

k=1

2kλk

νk

∞∑
n=1

sn

(
n−1

(
ν

2 + ν

)n

−
k−1∑
i=n

(−1)i+n νi

i2i

(
i

n

))}
, (34)

where the empty sum is defined to be 0. We claim that the order of summation in (34) with
respect to k and n can be interchanged. Indeed, this is clear under (i), since the sum in k is in
fact finite.
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Assume (ii). Then Taylor’s theorem applied to the function (1 + x)−n with n ≤ k − 1 gives

(1 + x)−n = n
k−1∑
�=n

(−1)�+n
(

�

n

)
x�−n

�
+ (−1)k−n

(
k − 1

k − n

)
(1 + ξ )−kxk−n,

with ξ ∈ (0, x). Therefore,∣∣∣∣∣
k−1∑
i=n

(−1)i+n
(

i

n

)
xi−n

i
− n−1(1 + x)−n

∣∣∣∣∣≤ n−1
(

k − 1

k − n

)
xk−n, (35)

thus, with x = ν/2,

∞∑
k=1

2kλk

νk

k−1∑
n=1

sn

∣∣∣∣∣
k−1∑
i=n

(−1)i+n
(

i

n

)
νi

2ii
− n−1

(
ν

2 + ν

)n
∣∣∣∣∣≤

∞∑
k=1

2kλk

νk

k−1∑
n=1

sn νn

2n
n−1

(
k − 1

k − n

)
νk−n

2k−n

=
∞∑

k=1

λk

k−1∑
n=1

snn−1
(

k − 1

k − n

)

≤
∞∑

k=1

λk(1 + s)k,

which is finite for s ∈ (0, 1) if lim sup λ
1/n
n ≤ 1

2 . The other part is easy to handle, as

∞∑
k=1

2kλk

νk

∞∑
n=k

snn−1
(

ν

2 + ν

)n

≤
∞∑

k=1

2kλk

νk
sk
(

ν

2 + ν

)k

=
∞∑

k=1

2kλk

(2 + ν)k
sk,

which is summable.
Summarizing, in both cases the order of summation in (34) can be interchanged, and doing

so we obtain fY (s) = exp
{−A0 +∑∞

n=1 Ansn
}
, where

A0 =
∞∑

k=1

2kλk

νk

(
k−1∑
i=1

(−1)i νi

i2i
+ log

(
1 + ν

2

))
,

An =
∞∑

k=1

2kλk

νk

((
ν

2 + ν

)n

n−1 −
k−1∑
i=n

(−1)i+n
(

i

n

)
νi

i2i

)
.

(36)

Recall the notation from the proof of Lemma 8. By (30), using the inversion formula for
Stirling numbers of the first and second kind (see, e.g., [10, Exercise 12, p. 310]), we have

k!λk =
k∑

i=0

(−1)k+i
[

k

i

]
μk,

where
[

k
i

]
represents the Stirling number of the first kind. Substituting (33), and using

k∑
i=0

(−1)k+i
[

k

i

]
jk = j(j − 1) · · · (j − k + 1)
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(see, e.g., [10, p. 263, (6.13)]), we obtain the formula

λk =
∞∑
j=k

(
j

k

)
qj. (37)

We also see that λk = 0 implies qj = 0 for all j ≥ k. Substituting (37) back into (36) we claim
that the order of summation with respect to k and j can be interchanged. This is again clear
under (i), while under (ii), by (35),

∞∑
k=n+1

∞∑
j=k

2k

νk
qj

(
j

k

)∣∣∣∣∣
k−1∑
i=n

(−1)i+n
(

i

n

)
νi

i2i
− n−1 νn

(2 + ν)n

∣∣∣∣∣
≤

∞∑
k=n+1

∞∑
j=k

2k

νk
qj

(
j

k

)
νn

2n
n−1

(
k − 1

k − n

)
νk−n

2k−n

=
∞∑

k=n+1

λkn−1
(

k − 1

k − n

)
< ∞,

since

n−1
(

k − 1

k − n

)
= k−1

(
k

n

)
≤ kn.

Thus, the order of summation is indeed interchangeable, and we obtain

An =
∞∑

j=1

qj

{[(
1 + 2

ν

)j

− 1

](
ν

2 + ν

)n

n−1 −
j∑

k=n+1

2k

νk

(
j

k

) k−1∑
i=n

(−1)i+n
(

i

n

)
νi

i2i

}

=:
∞∑

j=1

qjB(n, j). (38)

We claim that

B(n, j) = νn

(2 + ν)nn

[(
1 + 2

ν

)n∧j

− 1

]
. (39)

This is clear for j ≤ n. Writing � = k − i in the summation and using Lemma 9 with L = j − n
we obtain

j∑
k=n+1

k−1∑
i=n

(−1)i
(

j

k

)(
i − 1

n − 1

)
xk−i =

j∑
k=n+1

k−n∑
�=1

(−1)k+�

(
j

k

)(
k − � − 1

n − 1

)
x�

= (−1)n[(1 + x)j−n − 1].

Using that n
( i

n

)= i
( i−1

n−1

)
, and substituting back into (38) with x = 2/ν, we have

B(n, j) = n−1
[

1 −
(

1 + 2

ν

)j−n]
+
[(

1 + 2

ν

)j

− 1

](
ν

2 + ν

)n

n−1,

which after simplification gives (39).

https://doi.org/10.1017/jpr.2024.15 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.15


Nearly degenerate branching process in varying environment 1125

Now let ν = 0. In this case the calculations are again simpler. Expanding (s − 1)i and
changing the order of summation,

log fY (s) =
∞∑

k=1

(−1)k λk

k
+

∞∑
n=1

sn
∞∑

k=n

(−1)n+k λk

k

(
k

n

)
=: − A0 +

∞∑
n=1

snAn.

Substituting (37) and changing the order of summation again we get

An =
∞∑

j=n

qj

j∑
k=n

(
k

n

)(
j

k

)
(−1)k+n 1

k
. (40)

The changes of the order of summation can be justified as in the previous case. For the
coefficient of qj we have

j∑
k=n

(
k

n

)(
j

k

)
(−1)k+n 1

k
=
(

j

n

) j∑
k=n

1

k

(
j − n

k − n

)
(−1)k+n = 1

n
,

where we used that for j ≥ n,

j−n∑
k=0

(−1)k j

k + n

(
j − n

k

)
=
(

j − 1

n − 1

)−1

.

The latter formula follows by induction on j. Substituting back into (40), the proof is
complete. �
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